{"title":"基于采样数据的有限维观测器控制一维随机抛物多项式方程","authors":"Pengfei Wang, Emilia Fridman","doi":"10.1137/22m1538247","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Control and Optimization, Volume 62, Issue 1, Page 297-325, February 2024. <br/> Abstract. Sampled-data control of PDEs has become an active research area; however, existing results are confined to deterministic PDEs. Sampled-data controller design of stochastic PDEs is a challenging open problem. In this paper we suggest a solution to this problem for 1D stochastic diffusion-reaction equations under discrete-time nonlocal measurement via the modal decomposition method, where both the considered system and the measurement are subject to nonlinear multiplicative noise. We present two methods: a direct one with sampled-data controller implemented via zero-order hold device, and a dynamic-extension-based one with sampled-data controller implemented via a generalized hold device. For both methods, we provide mean-square [math] exponential stability analysis of the full-order closed-loop system. We construct a Lyapunov functional [math] that depends on both the deterministic and stochastic parts of the finite-dimensional part of the closed-loop system. We employ corresponding Itô’s formulas for stochastic ODEs and PDEs, respectively, and further combine [math] with Halanay’s inequality with respect to the expected value of [math] to compensate for sampling in the infinite-dimensional tail. We provide linear matrix inequalities (LMIs) for finding the observer dimension and upper bounds on sampling intervals and noise intensities that preserve the mean-square exponential stability. We prove that the LMIs are always feasible for large enough observer dimension and small enough bounds on sampling intervals and noise intensities. A numerical example demonstrates the efficiency of our methods. The example shows that for the same bounds on noise intensities, the dynamic-extension-based controller allows larger sampling intervals, but this is due to its complexity (generalized hold device for sample-data implementation compared to zero-order hold for the direct method).","PeriodicalId":49531,"journal":{"name":"SIAM Journal on Control and Optimization","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sampled-Data Finite-Dimensional Observer-Based Control of 1D Stochastic Parabolic PDEs\",\"authors\":\"Pengfei Wang, Emilia Fridman\",\"doi\":\"10.1137/22m1538247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Control and Optimization, Volume 62, Issue 1, Page 297-325, February 2024. <br/> Abstract. Sampled-data control of PDEs has become an active research area; however, existing results are confined to deterministic PDEs. Sampled-data controller design of stochastic PDEs is a challenging open problem. In this paper we suggest a solution to this problem for 1D stochastic diffusion-reaction equations under discrete-time nonlocal measurement via the modal decomposition method, where both the considered system and the measurement are subject to nonlinear multiplicative noise. We present two methods: a direct one with sampled-data controller implemented via zero-order hold device, and a dynamic-extension-based one with sampled-data controller implemented via a generalized hold device. For both methods, we provide mean-square [math] exponential stability analysis of the full-order closed-loop system. We construct a Lyapunov functional [math] that depends on both the deterministic and stochastic parts of the finite-dimensional part of the closed-loop system. We employ corresponding Itô’s formulas for stochastic ODEs and PDEs, respectively, and further combine [math] with Halanay’s inequality with respect to the expected value of [math] to compensate for sampling in the infinite-dimensional tail. We provide linear matrix inequalities (LMIs) for finding the observer dimension and upper bounds on sampling intervals and noise intensities that preserve the mean-square exponential stability. We prove that the LMIs are always feasible for large enough observer dimension and small enough bounds on sampling intervals and noise intensities. A numerical example demonstrates the efficiency of our methods. The example shows that for the same bounds on noise intensities, the dynamic-extension-based controller allows larger sampling intervals, but this is due to its complexity (generalized hold device for sample-data implementation compared to zero-order hold for the direct method).\",\"PeriodicalId\":49531,\"journal\":{\"name\":\"SIAM Journal on Control and Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Control and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1538247\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Control and Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1538247","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Sampled-Data Finite-Dimensional Observer-Based Control of 1D Stochastic Parabolic PDEs
SIAM Journal on Control and Optimization, Volume 62, Issue 1, Page 297-325, February 2024. Abstract. Sampled-data control of PDEs has become an active research area; however, existing results are confined to deterministic PDEs. Sampled-data controller design of stochastic PDEs is a challenging open problem. In this paper we suggest a solution to this problem for 1D stochastic diffusion-reaction equations under discrete-time nonlocal measurement via the modal decomposition method, where both the considered system and the measurement are subject to nonlinear multiplicative noise. We present two methods: a direct one with sampled-data controller implemented via zero-order hold device, and a dynamic-extension-based one with sampled-data controller implemented via a generalized hold device. For both methods, we provide mean-square [math] exponential stability analysis of the full-order closed-loop system. We construct a Lyapunov functional [math] that depends on both the deterministic and stochastic parts of the finite-dimensional part of the closed-loop system. We employ corresponding Itô’s formulas for stochastic ODEs and PDEs, respectively, and further combine [math] with Halanay’s inequality with respect to the expected value of [math] to compensate for sampling in the infinite-dimensional tail. We provide linear matrix inequalities (LMIs) for finding the observer dimension and upper bounds on sampling intervals and noise intensities that preserve the mean-square exponential stability. We prove that the LMIs are always feasible for large enough observer dimension and small enough bounds on sampling intervals and noise intensities. A numerical example demonstrates the efficiency of our methods. The example shows that for the same bounds on noise intensities, the dynamic-extension-based controller allows larger sampling intervals, but this is due to its complexity (generalized hold device for sample-data implementation compared to zero-order hold for the direct method).
期刊介绍:
SIAM Journal on Control and Optimization (SICON) publishes original research articles on the mathematics and applications of control theory and certain parts of optimization theory. Papers considered for publication must be significant at both the mathematical level and the level of applications or potential applications. Papers containing mostly routine mathematics or those with no discernible connection to control and systems theory or optimization will not be considered for publication. From time to time, the journal will also publish authoritative surveys of important subject areas in control theory and optimization whose level of maturity permits a clear and unified exposition.
The broad areas mentioned above are intended to encompass a wide range of mathematical techniques and scientific, engineering, economic, and industrial applications. These include stochastic and deterministic methods in control, estimation, and identification of systems; modeling and realization of complex control systems; the numerical analysis and related computational methodology of control processes and allied issues; and the development of mathematical theories and techniques that give new insights into old problems or provide the basis for further progress in control theory and optimization. Within the field of optimization, the journal focuses on the parts that are relevant to dynamic and control systems. Contributions to numerical methodology are also welcome in accordance with these aims, especially as related to large-scale problems and decomposition as well as to fundamental questions of convergence and approximation.