瞬子分割函数系数的数值实验

IF 1.2 3区 数学 Q1 MATHEMATICS
Aradhita Chattopadhyaya, Jan Manschot
{"title":"瞬子分割函数系数的数值实验","authors":"Aradhita Chattopadhyaya, Jan Manschot","doi":"10.4310/cntp.2023.v17.n4.a3","DOIUrl":null,"url":null,"abstract":"We analyze the coefficients of partition functions of Vafa–Witten (VW) theory on a four-manifold. These partition functions factorize into a product of a function enumerating pointlike instantons and a function enumerating smooth instantons. For gauge groups $SU(2)$ and $SU(3)$ and four-manifold the complex projective plane $\\mathbb{CP}^2$, we experimentally study the latter functions, which are examples of mock modular forms of depth $1$, weight $3/2$, and depth $2$, weight $3$ respectively. We also introduce the notion of “mock cusp form”, and study an example of weight $3$ related to the $SU(3)$ partition function. Numerical experiments on the first 200 coefficients of these mock modular forms suggest that the coefficients of these functions grow as $O(n^{k-1})$ for the respective weights $k = 3/2$ and $3$. This growth is similar to that of a modular form of weight $k$. On the other hand the coefficients of the mock cusp form of weight $3$ appear to grow as $O(n^{3/2})$, which exceeds the growth of classical cusp forms of weight $3$. We provide bounds using saddle point analysis, which however largely exceed the experimental observation.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":"27 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical experiments on coefficients of instanton partition functions\",\"authors\":\"Aradhita Chattopadhyaya, Jan Manschot\",\"doi\":\"10.4310/cntp.2023.v17.n4.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the coefficients of partition functions of Vafa–Witten (VW) theory on a four-manifold. These partition functions factorize into a product of a function enumerating pointlike instantons and a function enumerating smooth instantons. For gauge groups $SU(2)$ and $SU(3)$ and four-manifold the complex projective plane $\\\\mathbb{CP}^2$, we experimentally study the latter functions, which are examples of mock modular forms of depth $1$, weight $3/2$, and depth $2$, weight $3$ respectively. We also introduce the notion of “mock cusp form”, and study an example of weight $3$ related to the $SU(3)$ partition function. Numerical experiments on the first 200 coefficients of these mock modular forms suggest that the coefficients of these functions grow as $O(n^{k-1})$ for the respective weights $k = 3/2$ and $3$. This growth is similar to that of a modular form of weight $k$. On the other hand the coefficients of the mock cusp form of weight $3$ appear to grow as $O(n^{3/2})$, which exceeds the growth of classical cusp forms of weight $3$. We provide bounds using saddle point analysis, which however largely exceed the experimental observation.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2023.v17.n4.a3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2023.v17.n4.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了四曲面上瓦法-维滕(VW)理论的分区函数系数。这些分割函数因子化为一个枚举点状瞬子的函数和一个枚举光滑瞬子的函数的乘积。对于 gauge group $SU(2)$ 和 $SU(3)$ 以及四芒星复射平面 $m\mathbb{CP}^2$,我们通过实验研究了后一种函数,它们分别是深度为 1 美元、权重为 3/2 美元和深度为 2 美元、权重为 3 美元的模拟模态的例子。我们还引入了 "模拟尖顶形式 "的概念,并研究了与$SU(3)$分割函数相关的权重为3$的例子。对这些模拟模块形式的前 200 个系数进行的数值实验表明,对于各自的权重 $k = 3/2$ 和 $3$,这些函数的系数增长为 $O(n^{k-1})$。这种增长与权重为 $k$ 的模态类似。另一方面,权重为$3$的模拟尖顶形式的系数似乎增长了$O(n^{3/2})$,超过了权重为$3$的经典尖顶形式的增长。我们利用鞍点分析法给出了界限,但这在很大程度上超出了实验观察结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical experiments on coefficients of instanton partition functions
We analyze the coefficients of partition functions of Vafa–Witten (VW) theory on a four-manifold. These partition functions factorize into a product of a function enumerating pointlike instantons and a function enumerating smooth instantons. For gauge groups $SU(2)$ and $SU(3)$ and four-manifold the complex projective plane $\mathbb{CP}^2$, we experimentally study the latter functions, which are examples of mock modular forms of depth $1$, weight $3/2$, and depth $2$, weight $3$ respectively. We also introduce the notion of “mock cusp form”, and study an example of weight $3$ related to the $SU(3)$ partition function. Numerical experiments on the first 200 coefficients of these mock modular forms suggest that the coefficients of these functions grow as $O(n^{k-1})$ for the respective weights $k = 3/2$ and $3$. This growth is similar to that of a modular form of weight $k$. On the other hand the coefficients of the mock cusp form of weight $3$ appear to grow as $O(n^{3/2})$, which exceeds the growth of classical cusp forms of weight $3$. We provide bounds using saddle point analysis, which however largely exceed the experimental observation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信