{"title":"拓扑递推中 x-y$ 交映变换公式的拉普拉斯变换","authors":"Alexander Hock","doi":"10.4310/cntp.2023.v17.n4.a1","DOIUrl":null,"url":null,"abstract":"The functional relation coming from the $x-y$ symplectic transformation of Topological Recursion has a lot of applications; for instance it is the higher order moment-cumulant relation in free probability or can be used to compute intersection numbers on the moduli space of complex curves. We derive the Laplace transform of this functional relation, which has a very nice and compact form as a formal power series in $\\hbar$. We apply the Laplace transformed formula to the Airy curve and the Lambert curve which provides simple formulas for $\\psi$-class intersections numbers and Hodge integrals on $\\overline{\\mathcal{M}}_{g,n}$.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laplace transform of the $x-y$ symplectic transformation formula in Topological Recursion\",\"authors\":\"Alexander Hock\",\"doi\":\"10.4310/cntp.2023.v17.n4.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The functional relation coming from the $x-y$ symplectic transformation of Topological Recursion has a lot of applications; for instance it is the higher order moment-cumulant relation in free probability or can be used to compute intersection numbers on the moduli space of complex curves. We derive the Laplace transform of this functional relation, which has a very nice and compact form as a formal power series in $\\\\hbar$. We apply the Laplace transformed formula to the Airy curve and the Lambert curve which provides simple formulas for $\\\\psi$-class intersections numbers and Hodge integrals on $\\\\overline{\\\\mathcal{M}}_{g,n}$.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2023.v17.n4.a1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2023.v17.n4.a1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Laplace transform of the $x-y$ symplectic transformation formula in Topological Recursion
The functional relation coming from the $x-y$ symplectic transformation of Topological Recursion has a lot of applications; for instance it is the higher order moment-cumulant relation in free probability or can be used to compute intersection numbers on the moduli space of complex curves. We derive the Laplace transform of this functional relation, which has a very nice and compact form as a formal power series in $\hbar$. We apply the Laplace transformed formula to the Airy curve and the Lambert curve which provides simple formulas for $\psi$-class intersections numbers and Hodge integrals on $\overline{\mathcal{M}}_{g,n}$.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.