{"title":"通过社交媒体文本对临床抑郁症进行深度时空建模","authors":"Nawshad Farruque , Randy Goebel , Sudhakar Sivapalan , Osmar Zaïane","doi":"10.1016/j.nlp.2023.100052","DOIUrl":null,"url":null,"abstract":"<div><p>We describe the development of a model to detect user-level clinical depression based on a user’s temporal social media posts. Our model uses a Depression Symptoms Detection (DSD) classifier, which is trained on the largest existing samples of clinician annotated tweets for clinical depression symptoms. We subsequently use our DSD model to extract clinically relevant features, e.g., depression scores and their consequent temporal patterns, as well as user posting activity patterns, e.g., quantifying their “no activity” or “silence.” Furthermore, to evaluate the efficacy of these extracted features, we create three kinds of datasets including a test dataset, from two existing well-known benchmark datasets for user-level depression detection. We then provide accuracy measures based on single features, baseline features and feature ablation tests, at several different levels of temporal granularity. The relevant data distributions and clinical depression detection related settings can be exploited to draw a complete picture of the impact of different features across our created datasets. Finally, we show that, in general, only semantic oriented representation models perform well. However, clinical features may enhance overall performance provided that the training and testing distribution is similar, and there is more data in a user’s timeline. The consequence is that the predictive capability of depression scores increase significantly while used in a more sensitive clinical depression detection settings.</p></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"6 ","pages":"Article 100052"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949719123000493/pdfft?md5=0d6383093fc7867b461d44edd1c64ce4&pid=1-s2.0-S2949719123000493-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Deep temporal modelling of clinical depression through social media text\",\"authors\":\"Nawshad Farruque , Randy Goebel , Sudhakar Sivapalan , Osmar Zaïane\",\"doi\":\"10.1016/j.nlp.2023.100052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We describe the development of a model to detect user-level clinical depression based on a user’s temporal social media posts. Our model uses a Depression Symptoms Detection (DSD) classifier, which is trained on the largest existing samples of clinician annotated tweets for clinical depression symptoms. We subsequently use our DSD model to extract clinically relevant features, e.g., depression scores and their consequent temporal patterns, as well as user posting activity patterns, e.g., quantifying their “no activity” or “silence.” Furthermore, to evaluate the efficacy of these extracted features, we create three kinds of datasets including a test dataset, from two existing well-known benchmark datasets for user-level depression detection. We then provide accuracy measures based on single features, baseline features and feature ablation tests, at several different levels of temporal granularity. The relevant data distributions and clinical depression detection related settings can be exploited to draw a complete picture of the impact of different features across our created datasets. Finally, we show that, in general, only semantic oriented representation models perform well. However, clinical features may enhance overall performance provided that the training and testing distribution is similar, and there is more data in a user’s timeline. The consequence is that the predictive capability of depression scores increase significantly while used in a more sensitive clinical depression detection settings.</p></div>\",\"PeriodicalId\":100944,\"journal\":{\"name\":\"Natural Language Processing Journal\",\"volume\":\"6 \",\"pages\":\"Article 100052\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949719123000493/pdfft?md5=0d6383093fc7867b461d44edd1c64ce4&pid=1-s2.0-S2949719123000493-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Processing Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949719123000493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719123000493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep temporal modelling of clinical depression through social media text
We describe the development of a model to detect user-level clinical depression based on a user’s temporal social media posts. Our model uses a Depression Symptoms Detection (DSD) classifier, which is trained on the largest existing samples of clinician annotated tweets for clinical depression symptoms. We subsequently use our DSD model to extract clinically relevant features, e.g., depression scores and their consequent temporal patterns, as well as user posting activity patterns, e.g., quantifying their “no activity” or “silence.” Furthermore, to evaluate the efficacy of these extracted features, we create three kinds of datasets including a test dataset, from two existing well-known benchmark datasets for user-level depression detection. We then provide accuracy measures based on single features, baseline features and feature ablation tests, at several different levels of temporal granularity. The relevant data distributions and clinical depression detection related settings can be exploited to draw a complete picture of the impact of different features across our created datasets. Finally, we show that, in general, only semantic oriented representation models perform well. However, clinical features may enhance overall performance provided that the training and testing distribution is similar, and there is more data in a user’s timeline. The consequence is that the predictive capability of depression scores increase significantly while used in a more sensitive clinical depression detection settings.