Jin Liu, Tatsuaki Tagami, Koki Ogawa, Tetsuya Ozeki
{"title":"开发用于光热疗法的中空金纳米粒子及其与二乙基二硫代氨基甲酸铜结合对胶质瘤细胞系的细胞毒性作用","authors":"Jin Liu, Tatsuaki Tagami, Koki Ogawa, Tetsuya Ozeki","doi":"10.1248/bpb.b23-00789","DOIUrl":null,"url":null,"abstract":"<p><p>Gold-based nanoparticles hold promise as functional nanomedicines, including in combination with a photothermal effect for cancer therapy in conjunction with chemotherapy. Here, we synthesized hollow gold nanoparticles (HGNPs) exhibiting efficient light absorption in the near-IR (NIR) region. Several synthesis conditions were explored and provided monodisperse HGNPs approximately 95-135 nm in diameter with a light absorbance range of approximately 600-720 nm. The HGNPs were hollow and the surface had protruding structures when prepared using high concentrations of HAuCl<sub>4</sub>. The simultaneous nucleation of a sacrificial AgCl template and Au nanoparticles may affect the resulting HGNPs. Diethyldithiocarbamate (DDTC) is metabolized from disulfiram and is a repurposed drug currently attracting attention. The chelation of DDTC with copper ion (DDTC-Cu) has been investigated for treating glioma, and here we confirmed the cytotoxic effect of DDTC-Cu towards rat C6 glioma cells in vitro. HGNPs alone were biocompatible and showed little cytotoxicity, whereas a mixture of DDTC-Cu and HGNPs was cytotoxic in a dose dependent manner. The temperature of HGNPs was increased by NIR-laser irradiation. The photothermal effect on HGNPs under NIR-laser irradiation resulted in cytotoxicity towards C6 cells and was dependent on the irradiation time. Photothermal therapy by HGNPs combined and DDTC-Cu was highly effective, suggesting that this combination approach hold promise as a future glioma therapy.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Hollow Gold Nanoparticles for Photothermal Therapy and Their Cytotoxic Effect on a Glioma Cell Line When Combined with Copper Diethyldithiocarbamate.\",\"authors\":\"Jin Liu, Tatsuaki Tagami, Koki Ogawa, Tetsuya Ozeki\",\"doi\":\"10.1248/bpb.b23-00789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gold-based nanoparticles hold promise as functional nanomedicines, including in combination with a photothermal effect for cancer therapy in conjunction with chemotherapy. Here, we synthesized hollow gold nanoparticles (HGNPs) exhibiting efficient light absorption in the near-IR (NIR) region. Several synthesis conditions were explored and provided monodisperse HGNPs approximately 95-135 nm in diameter with a light absorbance range of approximately 600-720 nm. The HGNPs were hollow and the surface had protruding structures when prepared using high concentrations of HAuCl<sub>4</sub>. The simultaneous nucleation of a sacrificial AgCl template and Au nanoparticles may affect the resulting HGNPs. Diethyldithiocarbamate (DDTC) is metabolized from disulfiram and is a repurposed drug currently attracting attention. The chelation of DDTC with copper ion (DDTC-Cu) has been investigated for treating glioma, and here we confirmed the cytotoxic effect of DDTC-Cu towards rat C6 glioma cells in vitro. HGNPs alone were biocompatible and showed little cytotoxicity, whereas a mixture of DDTC-Cu and HGNPs was cytotoxic in a dose dependent manner. The temperature of HGNPs was increased by NIR-laser irradiation. The photothermal effect on HGNPs under NIR-laser irradiation resulted in cytotoxicity towards C6 cells and was dependent on the irradiation time. Photothermal therapy by HGNPs combined and DDTC-Cu was highly effective, suggesting that this combination approach hold promise as a future glioma therapy.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1248/bpb.b23-00789\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/bpb.b23-00789","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Development of Hollow Gold Nanoparticles for Photothermal Therapy and Their Cytotoxic Effect on a Glioma Cell Line When Combined with Copper Diethyldithiocarbamate.
Gold-based nanoparticles hold promise as functional nanomedicines, including in combination with a photothermal effect for cancer therapy in conjunction with chemotherapy. Here, we synthesized hollow gold nanoparticles (HGNPs) exhibiting efficient light absorption in the near-IR (NIR) region. Several synthesis conditions were explored and provided monodisperse HGNPs approximately 95-135 nm in diameter with a light absorbance range of approximately 600-720 nm. The HGNPs were hollow and the surface had protruding structures when prepared using high concentrations of HAuCl4. The simultaneous nucleation of a sacrificial AgCl template and Au nanoparticles may affect the resulting HGNPs. Diethyldithiocarbamate (DDTC) is metabolized from disulfiram and is a repurposed drug currently attracting attention. The chelation of DDTC with copper ion (DDTC-Cu) has been investigated for treating glioma, and here we confirmed the cytotoxic effect of DDTC-Cu towards rat C6 glioma cells in vitro. HGNPs alone were biocompatible and showed little cytotoxicity, whereas a mixture of DDTC-Cu and HGNPs was cytotoxic in a dose dependent manner. The temperature of HGNPs was increased by NIR-laser irradiation. The photothermal effect on HGNPs under NIR-laser irradiation resulted in cytotoxicity towards C6 cells and was dependent on the irradiation time. Photothermal therapy by HGNPs combined and DDTC-Cu was highly effective, suggesting that this combination approach hold promise as a future glioma therapy.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.