通过立方分层实现高阶蒙特卡洛

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Nicolas Chopin, Mathieu Gerber
{"title":"通过立方分层实现高阶蒙特卡洛","authors":"Nicolas Chopin, Mathieu Gerber","doi":"10.1137/22m1532287","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 1, Page 229-247, February 2024. <br/> Abstract. We propose two novel unbiased estimators of the integral [math] for a function [math], which depend on a smoothness parameter [math]. The first estimator integrates exactly the polynomials of degrees [math] and achieves the optimal error [math] (where [math] is the number of evaluations of [math]) when [math] is [math] times continuously differentiable. The second estimator is also optimal in terms of convergence rate and has the advantage of being computationally cheaper, but it is restricted to functions that vanish on the boundary of [math]. The construction of the two estimators relies on a combination of cubic stratification and control variates based on numerical derivatives. We provide numerical evidence that they show good performance even for moderate values of [math].","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"61 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher-Order Monte Carlo through Cubic Stratification\",\"authors\":\"Nicolas Chopin, Mathieu Gerber\",\"doi\":\"10.1137/22m1532287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 1, Page 229-247, February 2024. <br/> Abstract. We propose two novel unbiased estimators of the integral [math] for a function [math], which depend on a smoothness parameter [math]. The first estimator integrates exactly the polynomials of degrees [math] and achieves the optimal error [math] (where [math] is the number of evaluations of [math]) when [math] is [math] times continuously differentiable. The second estimator is also optimal in terms of convergence rate and has the advantage of being computationally cheaper, but it is restricted to functions that vanish on the boundary of [math]. The construction of the two estimators relies on a combination of cubic stratification and control variates based on numerical derivatives. We provide numerical evidence that they show good performance even for moderate values of [math].\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1532287\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1532287","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 数值分析期刊》第 62 卷第 1 期第 229-247 页,2024 年 2 月。 摘要。我们提出了两个新颖的函数[math]积分[math]无偏估计器,它们取决于平滑度参数[math]。当[math]为[math]次连续可微分时,第一个估计器精确地对[math]度的多项式进行积分,并获得最佳误差[math](其中[math]为[math]的求值次数)。第二个估计器在收敛速度方面也是最优的,而且具有计算成本更低的优势,但它仅限于在[math]边界上消失的函数。这两个估计器的构造依赖于立方分层和基于数值导数的控制变量的组合。我们提供的数值证据表明,即使[math]的值适中,它们也能表现出良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher-Order Monte Carlo through Cubic Stratification
SIAM Journal on Numerical Analysis, Volume 62, Issue 1, Page 229-247, February 2024.
Abstract. We propose two novel unbiased estimators of the integral [math] for a function [math], which depend on a smoothness parameter [math]. The first estimator integrates exactly the polynomials of degrees [math] and achieves the optimal error [math] (where [math] is the number of evaluations of [math]) when [math] is [math] times continuously differentiable. The second estimator is also optimal in terms of convergence rate and has the advantage of being computationally cheaper, but it is restricted to functions that vanish on the boundary of [math]. The construction of the two estimators relies on a combination of cubic stratification and control variates based on numerical derivatives. We provide numerical evidence that they show good performance even for moderate values of [math].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信