K V Vimalnath, Ardhi Rajeswari, Anupam Dixit, Rubel Chakravarty, Haldhar D Sarma, Suyash Kulkarni, Ashish Jha, Ameya Puranik, Venkatesh Rangarajan, Madhumita Goswami, Sudipta Chakraborty
{"title":"[钇铝硅酸盐玻璃微球:用于肝癌经济有效治疗的 \"TheraSphere \"生物类似配方。","authors":"K V Vimalnath, Ardhi Rajeswari, Anupam Dixit, Rubel Chakravarty, Haldhar D Sarma, Suyash Kulkarni, Ashish Jha, Ameya Puranik, Venkatesh Rangarajan, Madhumita Goswami, Sudipta Chakraborty","doi":"10.1089/cbr.2023.0118","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Selective internal radiation therapy (SIRT) using a suitable β<sup>-</sup>-emitting radionuclide is a promising treatment modality for unresectable liver carcinoma. Yttrium-90 (<sup>90</sup>Y) [<i>T</i><sub>1/2</sub> = 64.2 h, <i>E</i><sub>β</sub>(max) = 2.28 MeV, no detectable γ-photon] is the most preferred radioisotope for SIRT owing to its favorable decay characteristics. <b><i>Objective:</i></b> The present study describes indigenous development and evaluation of intrinsically radiolabeled [<sup>90</sup>Y]yttria alumino silicate ([<sup>90</sup>Y]YAS) glass microsphere, a formulation biosimilar to \"TheraSphere\" (commercially available, U.S. FDA-approved formulation), for SIRT of unresectable liver carcinoma in human patients. <b><i>Methods:</i></b> YAS glass microspheres of composition 40Y<sub>2</sub>O<sub>3</sub>-20Al<sub>2</sub>O<sub>3</sub>-40SiO<sub>2</sub> (w/w) and diameter ranging between 20 and 36 μm were synthesized with almost 100% conversion efficiency and >99% sphericity. Intrinsically labeled [<sup>90</sup>Y]YAS glass microspheres were produced by thermal neutron irradiation of cold YAS glass microspheres in a research reactor. Subsequent to <i>in vitro</i> evaluations and <i>in vivo</i> studies in healthy Wistar rats, customized doses of [<sup>90</sup>Y]YAS glass microspheres were administered in human patients. <b><i>Results:</i></b> [<sup>90</sup>Y]YAS glass microspheres were produced with 137.7 ± 8.6 MBq/mg YAS glass (∼6800 Bq per microsphere) specific activity and 99.94% ± 0.02% radionuclidic purity at the end of irradiation. The formulation exhibited excellent <i>in vitro</i> stability in human serum and showed >97% retention in the liver up to 7 d post-administration when biodistribution studies were carried out in healthy Wistar rats. Yttrium-90 positron emission tomography scans recorded at different time points post-administration of customized dose of [<sup>90</sup>Y]YAS glass microspheres in human patients showed near-quantitative retention of the formulation in the injected lobe. <b><i>Conclusions:</i></b> The study confirmed the suitability of indigenously prepared [<sup>90</sup>Y]YAS glass microspheres for clinical use in the treatment of unresectable hepatocellular carcinoma.</p>","PeriodicalId":55277,"journal":{"name":"Cancer Biotherapy and Radiopharmaceuticals","volume":" ","pages":"82-91"},"PeriodicalIF":2.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[<sup>90</sup>Y]Yttria Alumino Silicate Glass Microspheres: A Biosimilar Formulation to \\\"TheraSphere\\\" for Cost-Effective Treatment of Liver Cancer.\",\"authors\":\"K V Vimalnath, Ardhi Rajeswari, Anupam Dixit, Rubel Chakravarty, Haldhar D Sarma, Suyash Kulkarni, Ashish Jha, Ameya Puranik, Venkatesh Rangarajan, Madhumita Goswami, Sudipta Chakraborty\",\"doi\":\"10.1089/cbr.2023.0118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background:</i></b> Selective internal radiation therapy (SIRT) using a suitable β<sup>-</sup>-emitting radionuclide is a promising treatment modality for unresectable liver carcinoma. Yttrium-90 (<sup>90</sup>Y) [<i>T</i><sub>1/2</sub> = 64.2 h, <i>E</i><sub>β</sub>(max) = 2.28 MeV, no detectable γ-photon] is the most preferred radioisotope for SIRT owing to its favorable decay characteristics. <b><i>Objective:</i></b> The present study describes indigenous development and evaluation of intrinsically radiolabeled [<sup>90</sup>Y]yttria alumino silicate ([<sup>90</sup>Y]YAS) glass microsphere, a formulation biosimilar to \\\"TheraSphere\\\" (commercially available, U.S. FDA-approved formulation), for SIRT of unresectable liver carcinoma in human patients. <b><i>Methods:</i></b> YAS glass microspheres of composition 40Y<sub>2</sub>O<sub>3</sub>-20Al<sub>2</sub>O<sub>3</sub>-40SiO<sub>2</sub> (w/w) and diameter ranging between 20 and 36 μm were synthesized with almost 100% conversion efficiency and >99% sphericity. Intrinsically labeled [<sup>90</sup>Y]YAS glass microspheres were produced by thermal neutron irradiation of cold YAS glass microspheres in a research reactor. Subsequent to <i>in vitro</i> evaluations and <i>in vivo</i> studies in healthy Wistar rats, customized doses of [<sup>90</sup>Y]YAS glass microspheres were administered in human patients. <b><i>Results:</i></b> [<sup>90</sup>Y]YAS glass microspheres were produced with 137.7 ± 8.6 MBq/mg YAS glass (∼6800 Bq per microsphere) specific activity and 99.94% ± 0.02% radionuclidic purity at the end of irradiation. The formulation exhibited excellent <i>in vitro</i> stability in human serum and showed >97% retention in the liver up to 7 d post-administration when biodistribution studies were carried out in healthy Wistar rats. Yttrium-90 positron emission tomography scans recorded at different time points post-administration of customized dose of [<sup>90</sup>Y]YAS glass microspheres in human patients showed near-quantitative retention of the formulation in the injected lobe. <b><i>Conclusions:</i></b> The study confirmed the suitability of indigenously prepared [<sup>90</sup>Y]YAS glass microspheres for clinical use in the treatment of unresectable hepatocellular carcinoma.</p>\",\"PeriodicalId\":55277,\"journal\":{\"name\":\"Cancer Biotherapy and Radiopharmaceuticals\",\"volume\":\" \",\"pages\":\"82-91\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Biotherapy and Radiopharmaceuticals\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/cbr.2023.0118\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biotherapy and Radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cbr.2023.0118","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
[90Y]Yttria Alumino Silicate Glass Microspheres: A Biosimilar Formulation to "TheraSphere" for Cost-Effective Treatment of Liver Cancer.
Background: Selective internal radiation therapy (SIRT) using a suitable β--emitting radionuclide is a promising treatment modality for unresectable liver carcinoma. Yttrium-90 (90Y) [T1/2 = 64.2 h, Eβ(max) = 2.28 MeV, no detectable γ-photon] is the most preferred radioisotope for SIRT owing to its favorable decay characteristics. Objective: The present study describes indigenous development and evaluation of intrinsically radiolabeled [90Y]yttria alumino silicate ([90Y]YAS) glass microsphere, a formulation biosimilar to "TheraSphere" (commercially available, U.S. FDA-approved formulation), for SIRT of unresectable liver carcinoma in human patients. Methods: YAS glass microspheres of composition 40Y2O3-20Al2O3-40SiO2 (w/w) and diameter ranging between 20 and 36 μm were synthesized with almost 100% conversion efficiency and >99% sphericity. Intrinsically labeled [90Y]YAS glass microspheres were produced by thermal neutron irradiation of cold YAS glass microspheres in a research reactor. Subsequent to in vitro evaluations and in vivo studies in healthy Wistar rats, customized doses of [90Y]YAS glass microspheres were administered in human patients. Results: [90Y]YAS glass microspheres were produced with 137.7 ± 8.6 MBq/mg YAS glass (∼6800 Bq per microsphere) specific activity and 99.94% ± 0.02% radionuclidic purity at the end of irradiation. The formulation exhibited excellent in vitro stability in human serum and showed >97% retention in the liver up to 7 d post-administration when biodistribution studies were carried out in healthy Wistar rats. Yttrium-90 positron emission tomography scans recorded at different time points post-administration of customized dose of [90Y]YAS glass microspheres in human patients showed near-quantitative retention of the formulation in the injected lobe. Conclusions: The study confirmed the suitability of indigenously prepared [90Y]YAS glass microspheres for clinical use in the treatment of unresectable hepatocellular carcinoma.
期刊介绍:
Cancer Biotherapy and Radiopharmaceuticals is the established peer-reviewed journal, with over 25 years of cutting-edge content on innovative therapeutic investigations to ultimately improve cancer management. It is the only journal with the specific focus of cancer biotherapy and is inclusive of monoclonal antibodies, cytokine therapy, cancer gene therapy, cell-based therapies, and other forms of immunotherapies.
The Journal includes extensive reporting on advancements in radioimmunotherapy, and the use of radiopharmaceuticals and radiolabeled peptides for the development of new cancer treatments.