论 Gabor 相位检索中样本唯一性与稳定性之间的联系

Rima Alaifari, Francesca Bartolucci, Stefan Steinerberger, Matthias Wellershoff
{"title":"论 Gabor 相位检索中样本唯一性与稳定性之间的联系","authors":"Rima Alaifari, Francesca Bartolucci, Stefan Steinerberger, Matthias Wellershoff","doi":"10.1007/s43670-023-00079-1","DOIUrl":null,"url":null,"abstract":"<p><p><i>Gabor phase retrieval</i> is the problem of reconstructing a signal from only the magnitudes of its Gabor transform. Previous findings suggest a possible link between unique solvability of the discrete problem (recovery from measurements on a lattice) and stability of the continuous problem (recovery from measurements on an open subset of <math><msup><mrow><mi>R</mi></mrow><mn>2</mn></msup></math>). In this paper, we close this gap by proving that such a link cannot be made. More precisely, we establish the existence of functions which break uniqueness from samples without affecting stability of the continuous problem. Furthermore, we prove the novel result that counterexamples to unique recovery from samples are <i>dense</i> in <math><mrow><msup><mi>L</mi><mn>2</mn></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math>. Finally, we develop an intuitive argument on the connection between directions of instability in phase retrieval and certain Laplacian eigenfunctions associated to small eigenvalues.</p>","PeriodicalId":74751,"journal":{"name":"Sampling theory, signal processing, and data analysis","volume":"22 1","pages":"6"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10794308/pdf/","citationCount":"0","resultStr":"{\"title\":\"On the connection between uniqueness from samples and stability in Gabor phase retrieval.\",\"authors\":\"Rima Alaifari, Francesca Bartolucci, Stefan Steinerberger, Matthias Wellershoff\",\"doi\":\"10.1007/s43670-023-00079-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Gabor phase retrieval</i> is the problem of reconstructing a signal from only the magnitudes of its Gabor transform. Previous findings suggest a possible link between unique solvability of the discrete problem (recovery from measurements on a lattice) and stability of the continuous problem (recovery from measurements on an open subset of <math><msup><mrow><mi>R</mi></mrow><mn>2</mn></msup></math>). In this paper, we close this gap by proving that such a link cannot be made. More precisely, we establish the existence of functions which break uniqueness from samples without affecting stability of the continuous problem. Furthermore, we prove the novel result that counterexamples to unique recovery from samples are <i>dense</i> in <math><mrow><msup><mi>L</mi><mn>2</mn></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math>. Finally, we develop an intuitive argument on the connection between directions of instability in phase retrieval and certain Laplacian eigenfunctions associated to small eigenvalues.</p>\",\"PeriodicalId\":74751,\"journal\":{\"name\":\"Sampling theory, signal processing, and data analysis\",\"volume\":\"22 1\",\"pages\":\"6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10794308/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sampling theory, signal processing, and data analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s43670-023-00079-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sampling theory, signal processing, and data analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43670-023-00079-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Gabor 相位检索是仅从 Gabor 变换的幅度重建信号的问题。以往的研究结果表明,离散问题的唯一可解性(从网格上的测量结果恢复)与连续问题的稳定性(从 R2 的开放子集上的测量结果恢复)之间可能存在联系。在本文中,我们通过证明这种联系是不存在的,从而弥补了这一空白。更确切地说,我们确定了函数的存在,这些函数从样本出发打破了唯一性,却不影响连续问题的稳定性。此外,我们还证明了一个新颖的结果,即从样本恢复唯一性的反例在 L2(R) 中是密集的。最后,我们就相位恢复中的不稳定性方向与某些与小特征值相关的拉普拉卡特征函数之间的联系提出了一个直观论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the connection between uniqueness from samples and stability in Gabor phase retrieval.

Gabor phase retrieval is the problem of reconstructing a signal from only the magnitudes of its Gabor transform. Previous findings suggest a possible link between unique solvability of the discrete problem (recovery from measurements on a lattice) and stability of the continuous problem (recovery from measurements on an open subset of R2). In this paper, we close this gap by proving that such a link cannot be made. More precisely, we establish the existence of functions which break uniqueness from samples without affecting stability of the continuous problem. Furthermore, we prove the novel result that counterexamples to unique recovery from samples are dense in L2(R). Finally, we develop an intuitive argument on the connection between directions of instability in phase retrieval and certain Laplacian eigenfunctions associated to small eigenvalues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信