{"title":"利用液相色谱-串联质谱法进行高通量测定,同时评估 CYP3A 的活化以及对 CYP3A、CYP2C9 和 CYP2D6 的直接和时间依赖性抑制。","authors":"Yu Yumoto, Takuro Endo, Hiroshi Harada, Kaoru Kobayashi, Takeshi Nakabayashi, Yoshikazu Abe","doi":"10.1080/00498254.2024.2308818","DOIUrl":null,"url":null,"abstract":"<p><p>In the early stages of drug discovery, adequate evaluation of the potential drug-drug interactions (DDIs) of drug candidates is important. Several CYP3A activators are known to lead to underestimation of DDIs. These compounds affect midazolam 1'-hydroxylation but not midazolam 4-hydroxylation.We used both metabolic reactions of midazolam to evaluate the activation and inhibition of CYP3A activators simultaneously. For our CYP inhibition assay using cocktail probe substrates, simultaneous liquid chromatography-tandem mass spectrometry monitoring of 1'-hydroxymidazolam and 4-hydroxymidazolam for CYP3A was established in addition to monitoring of 4-hydroxydiclofenac and 1'-hydroxybufuralol for CYP2C9 and CYP2D6.The results of our cocktail inhibition assay were well correlated with those of a single inhibition assay, as were the estimated inhibition parameters for typical CYP3A inhibitors. In our assay, a proprietary compound that activated midazolam 1'-hydroxylation and tended to inhibit 4-hydroxylation was evaluated along with known CYP3A activators. All compounds were well characterised by comparison of the results of midazolam 1'- and 4-hydroxylation.In conclusion, our CYP cocktail inhibition assay can detect CYP3A activation and assess the direct and time-dependent inhibition potentials for CYP3A, CYP2C9, and CYP2D6. This method is expected to be very efficient in the early stages of drug discovery.</p>","PeriodicalId":23812,"journal":{"name":"Xenobiotica","volume":" ","pages":"45-56"},"PeriodicalIF":1.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-throughput assay to simultaneously evaluate activation of CYP3A and the direct and time-dependent inhibition of CYP3A, CYP2C9, and CYP2D6 using liquid chromatography-tandem mass spectrometry.\",\"authors\":\"Yu Yumoto, Takuro Endo, Hiroshi Harada, Kaoru Kobayashi, Takeshi Nakabayashi, Yoshikazu Abe\",\"doi\":\"10.1080/00498254.2024.2308818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the early stages of drug discovery, adequate evaluation of the potential drug-drug interactions (DDIs) of drug candidates is important. Several CYP3A activators are known to lead to underestimation of DDIs. These compounds affect midazolam 1'-hydroxylation but not midazolam 4-hydroxylation.We used both metabolic reactions of midazolam to evaluate the activation and inhibition of CYP3A activators simultaneously. For our CYP inhibition assay using cocktail probe substrates, simultaneous liquid chromatography-tandem mass spectrometry monitoring of 1'-hydroxymidazolam and 4-hydroxymidazolam for CYP3A was established in addition to monitoring of 4-hydroxydiclofenac and 1'-hydroxybufuralol for CYP2C9 and CYP2D6.The results of our cocktail inhibition assay were well correlated with those of a single inhibition assay, as were the estimated inhibition parameters for typical CYP3A inhibitors. In our assay, a proprietary compound that activated midazolam 1'-hydroxylation and tended to inhibit 4-hydroxylation was evaluated along with known CYP3A activators. All compounds were well characterised by comparison of the results of midazolam 1'- and 4-hydroxylation.In conclusion, our CYP cocktail inhibition assay can detect CYP3A activation and assess the direct and time-dependent inhibition potentials for CYP3A, CYP2C9, and CYP2D6. This method is expected to be very efficient in the early stages of drug discovery.</p>\",\"PeriodicalId\":23812,\"journal\":{\"name\":\"Xenobiotica\",\"volume\":\" \",\"pages\":\"45-56\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Xenobiotica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/00498254.2024.2308818\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Xenobiotica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00498254.2024.2308818","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
High-throughput assay to simultaneously evaluate activation of CYP3A and the direct and time-dependent inhibition of CYP3A, CYP2C9, and CYP2D6 using liquid chromatography-tandem mass spectrometry.
In the early stages of drug discovery, adequate evaluation of the potential drug-drug interactions (DDIs) of drug candidates is important. Several CYP3A activators are known to lead to underestimation of DDIs. These compounds affect midazolam 1'-hydroxylation but not midazolam 4-hydroxylation.We used both metabolic reactions of midazolam to evaluate the activation and inhibition of CYP3A activators simultaneously. For our CYP inhibition assay using cocktail probe substrates, simultaneous liquid chromatography-tandem mass spectrometry monitoring of 1'-hydroxymidazolam and 4-hydroxymidazolam for CYP3A was established in addition to monitoring of 4-hydroxydiclofenac and 1'-hydroxybufuralol for CYP2C9 and CYP2D6.The results of our cocktail inhibition assay were well correlated with those of a single inhibition assay, as were the estimated inhibition parameters for typical CYP3A inhibitors. In our assay, a proprietary compound that activated midazolam 1'-hydroxylation and tended to inhibit 4-hydroxylation was evaluated along with known CYP3A activators. All compounds were well characterised by comparison of the results of midazolam 1'- and 4-hydroxylation.In conclusion, our CYP cocktail inhibition assay can detect CYP3A activation and assess the direct and time-dependent inhibition potentials for CYP3A, CYP2C9, and CYP2D6. This method is expected to be very efficient in the early stages of drug discovery.
期刊介绍:
Xenobiotica covers seven main areas, including:General Xenobiochemistry, including in vitro studies concerned with the metabolism, disposition and excretion of drugs, and other xenobiotics, as well as the structure, function and regulation of associated enzymesClinical Pharmacokinetics and Metabolism, covering the pharmacokinetics and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in manAnimal Pharmacokinetics and Metabolism, covering the pharmacokinetics, and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in animalsPharmacogenetics, defined as the identification and functional characterisation of polymorphic genes that encode xenobiotic metabolising enzymes and transporters that may result in altered enzymatic, cellular and clinical responses to xenobioticsMolecular Toxicology, concerning the mechanisms of toxicity and the study of toxicology of xenobiotics at the molecular levelXenobiotic Transporters, concerned with all aspects of the carrier proteins involved in the movement of xenobiotics into and out of cells, and their impact on pharmacokinetic behaviour in animals and manTopics in Xenobiochemistry, in the form of reviews and commentaries are primarily intended to be a critical analysis of the issue, wherein the author offers opinions on the relevance of data or of a particular experimental approach or methodology