Babken Asatryan, Brittney Murray, Alessio Gasperetti, Rebecca McClellan, Andreas S Barth
{"title":"揭开遗传学上难以捉摸的长 QT 综合征的复杂面纱。","authors":"Babken Asatryan, Brittney Murray, Alessio Gasperetti, Rebecca McClellan, Andreas S Barth","doi":"10.1161/CIRCEP.123.012356","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic testing has become standard of care for patients with long QT syndrome (LQTS), providing diagnostic, prognostic, and therapeutic information for both probands and their family members. However, up to a quarter of patients with LQTS do not have identifiable Mendelian pathogenic variants in the currently known LQTS-associated genes. This absence of genetic confirmation, intriguingly, does not lessen the severity of LQTS, with the prognosis in these gene-elusive patients with unequivocal LQTS mirroring genotype-positive patients in the limited data available. Such a conundrum instigates an exploration into the causes of corrected QT interval (QTc) prolongation in these cases, unveiling a broad spectrum of potential scenarios and mechanisms. These include multiple environmental influences on QTc prolongation, exercise-induced repolarization abnormalities, and the profound implications of the constantly evolving nature of genetic testing and variant interpretation. In addition, the rapid advances in genetics have the potential to uncover new causal genes, and polygenic risk factors may aid in the diagnosis of high-risk patients. Navigating this multifaceted landscape requires a systematic approach and expert knowledge, integrating the dynamic nature of genetics and patient-specific influences for accurate diagnosis, management, and counseling of patients. The role of a subspecialized expert cardiogenetic clinic is paramount in evaluation to navigate this complexity. Amid these intricate aspects, this review outlines potential causes of gene-elusive LQTS. It also provides an outline for the evaluation of patients with negative and inconclusive genetic test results and underscores the need for ongoing adaptation and reassessment in our understanding of LQTS, as the complexities of gene-elusive LQTS are increasingly deciphered.</p>","PeriodicalId":10319,"journal":{"name":"Circulation. Arrhythmia and electrophysiology","volume":" ","pages":"e012356"},"PeriodicalIF":9.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling Complexities in Genetically Elusive Long QT Syndrome.\",\"authors\":\"Babken Asatryan, Brittney Murray, Alessio Gasperetti, Rebecca McClellan, Andreas S Barth\",\"doi\":\"10.1161/CIRCEP.123.012356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genetic testing has become standard of care for patients with long QT syndrome (LQTS), providing diagnostic, prognostic, and therapeutic information for both probands and their family members. However, up to a quarter of patients with LQTS do not have identifiable Mendelian pathogenic variants in the currently known LQTS-associated genes. This absence of genetic confirmation, intriguingly, does not lessen the severity of LQTS, with the prognosis in these gene-elusive patients with unequivocal LQTS mirroring genotype-positive patients in the limited data available. Such a conundrum instigates an exploration into the causes of corrected QT interval (QTc) prolongation in these cases, unveiling a broad spectrum of potential scenarios and mechanisms. These include multiple environmental influences on QTc prolongation, exercise-induced repolarization abnormalities, and the profound implications of the constantly evolving nature of genetic testing and variant interpretation. In addition, the rapid advances in genetics have the potential to uncover new causal genes, and polygenic risk factors may aid in the diagnosis of high-risk patients. Navigating this multifaceted landscape requires a systematic approach and expert knowledge, integrating the dynamic nature of genetics and patient-specific influences for accurate diagnosis, management, and counseling of patients. The role of a subspecialized expert cardiogenetic clinic is paramount in evaluation to navigate this complexity. Amid these intricate aspects, this review outlines potential causes of gene-elusive LQTS. It also provides an outline for the evaluation of patients with negative and inconclusive genetic test results and underscores the need for ongoing adaptation and reassessment in our understanding of LQTS, as the complexities of gene-elusive LQTS are increasingly deciphered.</p>\",\"PeriodicalId\":10319,\"journal\":{\"name\":\"Circulation. Arrhythmia and electrophysiology\",\"volume\":\" \",\"pages\":\"e012356\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation. Arrhythmia and electrophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCEP.123.012356\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation. Arrhythmia and electrophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCEP.123.012356","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Unraveling Complexities in Genetically Elusive Long QT Syndrome.
Genetic testing has become standard of care for patients with long QT syndrome (LQTS), providing diagnostic, prognostic, and therapeutic information for both probands and their family members. However, up to a quarter of patients with LQTS do not have identifiable Mendelian pathogenic variants in the currently known LQTS-associated genes. This absence of genetic confirmation, intriguingly, does not lessen the severity of LQTS, with the prognosis in these gene-elusive patients with unequivocal LQTS mirroring genotype-positive patients in the limited data available. Such a conundrum instigates an exploration into the causes of corrected QT interval (QTc) prolongation in these cases, unveiling a broad spectrum of potential scenarios and mechanisms. These include multiple environmental influences on QTc prolongation, exercise-induced repolarization abnormalities, and the profound implications of the constantly evolving nature of genetic testing and variant interpretation. In addition, the rapid advances in genetics have the potential to uncover new causal genes, and polygenic risk factors may aid in the diagnosis of high-risk patients. Navigating this multifaceted landscape requires a systematic approach and expert knowledge, integrating the dynamic nature of genetics and patient-specific influences for accurate diagnosis, management, and counseling of patients. The role of a subspecialized expert cardiogenetic clinic is paramount in evaluation to navigate this complexity. Amid these intricate aspects, this review outlines potential causes of gene-elusive LQTS. It also provides an outline for the evaluation of patients with negative and inconclusive genetic test results and underscores the need for ongoing adaptation and reassessment in our understanding of LQTS, as the complexities of gene-elusive LQTS are increasingly deciphered.
期刊介绍:
Circulation: Arrhythmia and Electrophysiology is a journal dedicated to the study and application of clinical cardiac electrophysiology. It covers a wide range of topics including the diagnosis and treatment of cardiac arrhythmias, as well as research in this field. The journal accepts various types of studies, including observational research, clinical trials, epidemiological studies, and advancements in translational research.