{"title":"使用甲基胆碱挑战试验诊断哮喘的新型人工智能技术。","authors":"Noeul Kang, KyungHyun Lee, Sangwon Byun, Jin-Young Lee, Dong-Chull Choi, Byung-Jae Lee","doi":"10.4168/aair.2024.16.1.42","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The methacholine challenge test (MCT) has high sensitivity but relatively low specificity for asthma diagnosis. This study aimed to develop and validate machine learning (ML) models to improve the diagnostic performance of MCT for asthma.</p><p><strong>Methods: </strong>Data from 1,501 patients with asthma symptoms who underwent MCT between 2015 and 2020 were analyzed. The patients were grouped as either the training (80%, n = 1,265) and test sets (20%, n = 236) depending on the time of referral. The conventional model (provocative concentration that causes a 20% decrease in forced expiratory volume in one second [FEV<sub>1</sub>]; PC<sub>20</sub> ≤ 16 mg/mL) was compared with the prediction models derived from five ML methods: logistic regression, support vector machine, random forest, extreme gradient boosting, and artificial neural network. The area under the receiver operator characteristic curves (AUROC) and area under the precision-recall curves (AUPRC) of each model were compared. The prediction models were further analyzed using different input combinations of FEV<sub>1</sub>, forced vital capacity (FVC), and forced expiratory flow at 25%-75% of forced vital capacity (FEF<sub>25%-75%</sub>) values obtained during MCT.</p><p><strong>Results: </strong>In total, 545 patients (36.3%) were diagnosed with asthma. The AUROC of the conventional model was 0.856 (95% confidence interval [CI], 0.852-0.861), and the AUPRC was 0.759 (95% CI, 0.751-0.766). All the five ML prediction models had higher AUROC and AUPRC values than those of the conventional model, and random forest showed both highest AUROC (0.950; 95% CI, 0.948-0.952) and AUROC (0.909; 95% CI, 0.905-0.914) when FEV<sub>1</sub>, FVC, and FEF<sub>25%-75%</sub> were included as inputs.</p><p><strong>Conclusions: </strong>Artificial intelligence-based models showed excellent performance in asthma prediction compared to using PC<sub>20</sub> ≤ 16 mg/mL. The novel technology could be used to enhance the clinical diagnosis of asthma.</p>","PeriodicalId":7547,"journal":{"name":"Allergy, Asthma & Immunology Research","volume":"16 1","pages":"42-54"},"PeriodicalIF":4.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10823143/pdf/","citationCount":"0","resultStr":"{\"title\":\"Novel Artificial Intelligence-Based Technology to Diagnose Asthma Using Methacholine Challenge Tests.\",\"authors\":\"Noeul Kang, KyungHyun Lee, Sangwon Byun, Jin-Young Lee, Dong-Chull Choi, Byung-Jae Lee\",\"doi\":\"10.4168/aair.2024.16.1.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The methacholine challenge test (MCT) has high sensitivity but relatively low specificity for asthma diagnosis. This study aimed to develop and validate machine learning (ML) models to improve the diagnostic performance of MCT for asthma.</p><p><strong>Methods: </strong>Data from 1,501 patients with asthma symptoms who underwent MCT between 2015 and 2020 were analyzed. The patients were grouped as either the training (80%, n = 1,265) and test sets (20%, n = 236) depending on the time of referral. The conventional model (provocative concentration that causes a 20% decrease in forced expiratory volume in one second [FEV<sub>1</sub>]; PC<sub>20</sub> ≤ 16 mg/mL) was compared with the prediction models derived from five ML methods: logistic regression, support vector machine, random forest, extreme gradient boosting, and artificial neural network. The area under the receiver operator characteristic curves (AUROC) and area under the precision-recall curves (AUPRC) of each model were compared. The prediction models were further analyzed using different input combinations of FEV<sub>1</sub>, forced vital capacity (FVC), and forced expiratory flow at 25%-75% of forced vital capacity (FEF<sub>25%-75%</sub>) values obtained during MCT.</p><p><strong>Results: </strong>In total, 545 patients (36.3%) were diagnosed with asthma. The AUROC of the conventional model was 0.856 (95% confidence interval [CI], 0.852-0.861), and the AUPRC was 0.759 (95% CI, 0.751-0.766). All the five ML prediction models had higher AUROC and AUPRC values than those of the conventional model, and random forest showed both highest AUROC (0.950; 95% CI, 0.948-0.952) and AUROC (0.909; 95% CI, 0.905-0.914) when FEV<sub>1</sub>, FVC, and FEF<sub>25%-75%</sub> were included as inputs.</p><p><strong>Conclusions: </strong>Artificial intelligence-based models showed excellent performance in asthma prediction compared to using PC<sub>20</sub> ≤ 16 mg/mL. The novel technology could be used to enhance the clinical diagnosis of asthma.</p>\",\"PeriodicalId\":7547,\"journal\":{\"name\":\"Allergy, Asthma & Immunology Research\",\"volume\":\"16 1\",\"pages\":\"42-54\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10823143/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Allergy, Asthma & Immunology Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4168/aair.2024.16.1.42\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ALLERGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Allergy, Asthma & Immunology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4168/aair.2024.16.1.42","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ALLERGY","Score":null,"Total":0}
Novel Artificial Intelligence-Based Technology to Diagnose Asthma Using Methacholine Challenge Tests.
Purpose: The methacholine challenge test (MCT) has high sensitivity but relatively low specificity for asthma diagnosis. This study aimed to develop and validate machine learning (ML) models to improve the diagnostic performance of MCT for asthma.
Methods: Data from 1,501 patients with asthma symptoms who underwent MCT between 2015 and 2020 were analyzed. The patients were grouped as either the training (80%, n = 1,265) and test sets (20%, n = 236) depending on the time of referral. The conventional model (provocative concentration that causes a 20% decrease in forced expiratory volume in one second [FEV1]; PC20 ≤ 16 mg/mL) was compared with the prediction models derived from five ML methods: logistic regression, support vector machine, random forest, extreme gradient boosting, and artificial neural network. The area under the receiver operator characteristic curves (AUROC) and area under the precision-recall curves (AUPRC) of each model were compared. The prediction models were further analyzed using different input combinations of FEV1, forced vital capacity (FVC), and forced expiratory flow at 25%-75% of forced vital capacity (FEF25%-75%) values obtained during MCT.
Results: In total, 545 patients (36.3%) were diagnosed with asthma. The AUROC of the conventional model was 0.856 (95% confidence interval [CI], 0.852-0.861), and the AUPRC was 0.759 (95% CI, 0.751-0.766). All the five ML prediction models had higher AUROC and AUPRC values than those of the conventional model, and random forest showed both highest AUROC (0.950; 95% CI, 0.948-0.952) and AUROC (0.909; 95% CI, 0.905-0.914) when FEV1, FVC, and FEF25%-75% were included as inputs.
Conclusions: Artificial intelligence-based models showed excellent performance in asthma prediction compared to using PC20 ≤ 16 mg/mL. The novel technology could be used to enhance the clinical diagnosis of asthma.
期刊介绍:
The journal features cutting-edge original research, brief communications, and state-of-the-art reviews in the specialties of allergy, asthma, and immunology, including clinical and experimental studies and instructive case reports. Contemporary reviews summarize information on topics for researchers and physicians in the fields of allergy and immunology. As of January 2017, AAIR do not accept case reports. However, if it is a clinically important case, authors can submit it in the form of letter to the Editor. Editorials and letters to the Editor explore controversial issues and encourage further discussion among physicians dealing with allergy, immunology, pediatric respirology, and related medical fields. AAIR also features topics in practice and management and recent advances in equipment and techniques for clinicians concerned with clinical manifestations of allergies and pediatric respiratory diseases.