使用真实石油样品对浸入刺激乳液中的 X52 和 X80 钢进行腐蚀测试

Q1 Earth and Planetary Sciences
L.M. Quej-Ake, J.L. Alamilla, A. Contreras
{"title":"使用真实石油样品对浸入刺激乳液中的 X52 和 X80 钢进行腐蚀测试","authors":"L.M. Quej-Ake,&nbsp;J.L. Alamilla,&nbsp;A. Contreras","doi":"10.1016/j.ptlrs.2024.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this study is to evaluate the internal corrosion process on X52 and X80 steels/real petroleum interfaces containing condensed hydrocarbon plus oilfield-produced water, which were subjected to stimulated emulsions using 50/50 vol ratio mixtures at 45 °C, different hydrodynamic conditions, 1 h, and 24 h. A washing process by using deionized water was proposed to simulate and identify the corrosiveness of the hydrocarbon phase after 24 h of exposure time. The characterization by electrochemical impedance spectroscopy and the monitoring of the polarization curves indicated that X80 steel/oilfield-produced water interfaces were more susceptible to corrosion than X52 steel exposed to oilfield-produced water. The combined speed rotation of 600 rpm using a magnetic stirrer + 600 rpm using a rotating disk electrode decreased the corrosion rate on X52 steel. The stimulated emulsions made of hydrocarbon + oilfield-produced water and hydrocarbon + deionized water at 24 h increased the corrosion rate on X80 steel (0.34 mm/year and 0.43 mm/year, respectively), promoting the formation of erosion and pitting corrosion. These types of corrosion depended mainly on the physicochemical properties of the hydrocarbon, oilfield-produced water, exposure times, and hydrodynamic systems in which the hydrocarbon was studied.</p></div>","PeriodicalId":19756,"journal":{"name":"Petroleum Research","volume":"9 2","pages":"Pages 304-316"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096249524000024/pdfft?md5=50dab8f7d69571753a875691db537421&pid=1-s2.0-S2096249524000024-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Corrosion testing of X52 and X80 steels immersed in stimulated emulsions using a real petroleum sample\",\"authors\":\"L.M. Quej-Ake,&nbsp;J.L. Alamilla,&nbsp;A. Contreras\",\"doi\":\"10.1016/j.ptlrs.2024.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this study is to evaluate the internal corrosion process on X52 and X80 steels/real petroleum interfaces containing condensed hydrocarbon plus oilfield-produced water, which were subjected to stimulated emulsions using 50/50 vol ratio mixtures at 45 °C, different hydrodynamic conditions, 1 h, and 24 h. A washing process by using deionized water was proposed to simulate and identify the corrosiveness of the hydrocarbon phase after 24 h of exposure time. The characterization by electrochemical impedance spectroscopy and the monitoring of the polarization curves indicated that X80 steel/oilfield-produced water interfaces were more susceptible to corrosion than X52 steel exposed to oilfield-produced water. The combined speed rotation of 600 rpm using a magnetic stirrer + 600 rpm using a rotating disk electrode decreased the corrosion rate on X52 steel. The stimulated emulsions made of hydrocarbon + oilfield-produced water and hydrocarbon + deionized water at 24 h increased the corrosion rate on X80 steel (0.34 mm/year and 0.43 mm/year, respectively), promoting the formation of erosion and pitting corrosion. These types of corrosion depended mainly on the physicochemical properties of the hydrocarbon, oilfield-produced water, exposure times, and hydrodynamic systems in which the hydrocarbon was studied.</p></div>\",\"PeriodicalId\":19756,\"journal\":{\"name\":\"Petroleum Research\",\"volume\":\"9 2\",\"pages\":\"Pages 304-316\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2096249524000024/pdfft?md5=50dab8f7d69571753a875691db537421&pid=1-s2.0-S2096249524000024-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Research\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096249524000024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Research","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096249524000024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在评估 X52 和 X80 钢/含有冷凝烃和油田产水的实际石油界面的内部腐蚀过程,这些界面在 45 °C、不同流体动力学条件、1 小时和 24 小时内受到 50/50 体积比混合物的刺激乳化。电化学阻抗光谱和极化曲线监测表明,X80 钢/油田采出水界面比暴露在油田采出水中的 X52 钢更容易受到腐蚀。使用磁力搅拌器 600 rpm + 旋转盘电极 600 rpm 的组合转速降低了 X52 钢的腐蚀率。碳氢化合物+油田采出水和碳氢化合物+去离子水制成的刺激乳液在 24 小时内提高了 X80 钢的腐蚀速率(分别为 0.34 毫米/年和 0.43 毫米/年),促进了侵蚀和点腐蚀的形成。这些类型的腐蚀主要取决于碳氢化合物、油田采出水、暴露时间和研究碳氢化合物的水动力系统的物理化学特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Corrosion testing of X52 and X80 steels immersed in stimulated emulsions using a real petroleum sample

The aim of this study is to evaluate the internal corrosion process on X52 and X80 steels/real petroleum interfaces containing condensed hydrocarbon plus oilfield-produced water, which were subjected to stimulated emulsions using 50/50 vol ratio mixtures at 45 °C, different hydrodynamic conditions, 1 h, and 24 h. A washing process by using deionized water was proposed to simulate and identify the corrosiveness of the hydrocarbon phase after 24 h of exposure time. The characterization by electrochemical impedance spectroscopy and the monitoring of the polarization curves indicated that X80 steel/oilfield-produced water interfaces were more susceptible to corrosion than X52 steel exposed to oilfield-produced water. The combined speed rotation of 600 rpm using a magnetic stirrer + 600 rpm using a rotating disk electrode decreased the corrosion rate on X52 steel. The stimulated emulsions made of hydrocarbon + oilfield-produced water and hydrocarbon + deionized water at 24 h increased the corrosion rate on X80 steel (0.34 mm/year and 0.43 mm/year, respectively), promoting the formation of erosion and pitting corrosion. These types of corrosion depended mainly on the physicochemical properties of the hydrocarbon, oilfield-produced water, exposure times, and hydrodynamic systems in which the hydrocarbon was studied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Petroleum Research
Petroleum Research Earth and Planetary Sciences-Geology
CiteScore
7.10
自引率
0.00%
发文量
90
审稿时长
35 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信