{"title":"使用真实石油样品对浸入刺激乳液中的 X52 和 X80 钢进行腐蚀测试","authors":"L.M. Quej-Ake, J.L. Alamilla, A. Contreras","doi":"10.1016/j.ptlrs.2024.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this study is to evaluate the internal corrosion process on X52 and X80 steels/real petroleum interfaces containing condensed hydrocarbon plus oilfield-produced water, which were subjected to stimulated emulsions using 50/50 vol ratio mixtures at 45 °C, different hydrodynamic conditions, 1 h, and 24 h. A washing process by using deionized water was proposed to simulate and identify the corrosiveness of the hydrocarbon phase after 24 h of exposure time. The characterization by electrochemical impedance spectroscopy and the monitoring of the polarization curves indicated that X80 steel/oilfield-produced water interfaces were more susceptible to corrosion than X52 steel exposed to oilfield-produced water. The combined speed rotation of 600 rpm using a magnetic stirrer + 600 rpm using a rotating disk electrode decreased the corrosion rate on X52 steel. The stimulated emulsions made of hydrocarbon + oilfield-produced water and hydrocarbon + deionized water at 24 h increased the corrosion rate on X80 steel (0.34 mm/year and 0.43 mm/year, respectively), promoting the formation of erosion and pitting corrosion. These types of corrosion depended mainly on the physicochemical properties of the hydrocarbon, oilfield-produced water, exposure times, and hydrodynamic systems in which the hydrocarbon was studied.</p></div>","PeriodicalId":19756,"journal":{"name":"Petroleum Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096249524000024/pdfft?md5=50dab8f7d69571753a875691db537421&pid=1-s2.0-S2096249524000024-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Corrosion testing of X52 and X80 steels immersed in stimulated emulsions using a real petroleum sample\",\"authors\":\"L.M. Quej-Ake, J.L. Alamilla, A. Contreras\",\"doi\":\"10.1016/j.ptlrs.2024.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this study is to evaluate the internal corrosion process on X52 and X80 steels/real petroleum interfaces containing condensed hydrocarbon plus oilfield-produced water, which were subjected to stimulated emulsions using 50/50 vol ratio mixtures at 45 °C, different hydrodynamic conditions, 1 h, and 24 h. A washing process by using deionized water was proposed to simulate and identify the corrosiveness of the hydrocarbon phase after 24 h of exposure time. The characterization by electrochemical impedance spectroscopy and the monitoring of the polarization curves indicated that X80 steel/oilfield-produced water interfaces were more susceptible to corrosion than X52 steel exposed to oilfield-produced water. The combined speed rotation of 600 rpm using a magnetic stirrer + 600 rpm using a rotating disk electrode decreased the corrosion rate on X52 steel. The stimulated emulsions made of hydrocarbon + oilfield-produced water and hydrocarbon + deionized water at 24 h increased the corrosion rate on X80 steel (0.34 mm/year and 0.43 mm/year, respectively), promoting the formation of erosion and pitting corrosion. These types of corrosion depended mainly on the physicochemical properties of the hydrocarbon, oilfield-produced water, exposure times, and hydrodynamic systems in which the hydrocarbon was studied.</p></div>\",\"PeriodicalId\":19756,\"journal\":{\"name\":\"Petroleum Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2096249524000024/pdfft?md5=50dab8f7d69571753a875691db537421&pid=1-s2.0-S2096249524000024-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Research\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096249524000024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Research","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096249524000024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Corrosion testing of X52 and X80 steels immersed in stimulated emulsions using a real petroleum sample
The aim of this study is to evaluate the internal corrosion process on X52 and X80 steels/real petroleum interfaces containing condensed hydrocarbon plus oilfield-produced water, which were subjected to stimulated emulsions using 50/50 vol ratio mixtures at 45 °C, different hydrodynamic conditions, 1 h, and 24 h. A washing process by using deionized water was proposed to simulate and identify the corrosiveness of the hydrocarbon phase after 24 h of exposure time. The characterization by electrochemical impedance spectroscopy and the monitoring of the polarization curves indicated that X80 steel/oilfield-produced water interfaces were more susceptible to corrosion than X52 steel exposed to oilfield-produced water. The combined speed rotation of 600 rpm using a magnetic stirrer + 600 rpm using a rotating disk electrode decreased the corrosion rate on X52 steel. The stimulated emulsions made of hydrocarbon + oilfield-produced water and hydrocarbon + deionized water at 24 h increased the corrosion rate on X80 steel (0.34 mm/year and 0.43 mm/year, respectively), promoting the formation of erosion and pitting corrosion. These types of corrosion depended mainly on the physicochemical properties of the hydrocarbon, oilfield-produced water, exposure times, and hydrodynamic systems in which the hydrocarbon was studied.