利用回收的利乐包废料和石蜡设计的热能储存材料具有更高的光热转换效率

Q1 Engineering
Safna Nishad , Mabrouk Ouederni , Igor Krupa
{"title":"利用回收的利乐包废料和石蜡设计的热能储存材料具有更高的光热转换效率","authors":"Safna Nishad ,&nbsp;Mabrouk Ouederni ,&nbsp;Igor Krupa","doi":"10.1016/j.enbenv.2024.01.003","DOIUrl":null,"url":null,"abstract":"<div><div>The phase change material (PCM)-integrated solar water heaters have great potential to save energy by utilizing renewable resources and to extend working hours even after sunsets. The PCM composites fabricated with recycled waste products lead to the circular economy which would contribute significantly to the sustainable development goals. In this work, Tetra Pak waste (TP) was used to prepare a form-stable PCM composite by mixing with paraffin wax (PW) and expanded graphite (EG) to integrate with solar water heaters. Two different PWs with melting points of 44 (RT44) and 64 (RT64) were used in the lower and higher temperature ranges of domestic water heating applications, respectively. The prepared composites exhibited enhanced thermal conductivity (1.1–1.15 W/m °C), heat storage capacity (98.5–105.6 J/g), and photothermal conversion efficiency (85 % and 55 % for composites with RT44 and RT64, respectively). The numerical analysis conducted on a validated model helped to estimate the optimum composite thickness for specific solar exposure time. The fabricated PCM composite promoted the recycling of TP waste into useful products and was efficient in maintaining a higher nocturnal water temperature in the solar water heater.</div></div>","PeriodicalId":33659,"journal":{"name":"Energy and Built Environment","volume":"6 3","pages":"Pages 455-465"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal energy storage materials designed from recycled Tetra Pak waste and paraffin waxes with enhanced photothermal conversion efficiencies\",\"authors\":\"Safna Nishad ,&nbsp;Mabrouk Ouederni ,&nbsp;Igor Krupa\",\"doi\":\"10.1016/j.enbenv.2024.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The phase change material (PCM)-integrated solar water heaters have great potential to save energy by utilizing renewable resources and to extend working hours even after sunsets. The PCM composites fabricated with recycled waste products lead to the circular economy which would contribute significantly to the sustainable development goals. In this work, Tetra Pak waste (TP) was used to prepare a form-stable PCM composite by mixing with paraffin wax (PW) and expanded graphite (EG) to integrate with solar water heaters. Two different PWs with melting points of 44 (RT44) and 64 (RT64) were used in the lower and higher temperature ranges of domestic water heating applications, respectively. The prepared composites exhibited enhanced thermal conductivity (1.1–1.15 W/m °C), heat storage capacity (98.5–105.6 J/g), and photothermal conversion efficiency (85 % and 55 % for composites with RT44 and RT64, respectively). The numerical analysis conducted on a validated model helped to estimate the optimum composite thickness for specific solar exposure time. The fabricated PCM composite promoted the recycling of TP waste into useful products and was efficient in maintaining a higher nocturnal water temperature in the solar water heater.</div></div>\",\"PeriodicalId\":33659,\"journal\":{\"name\":\"Energy and Built Environment\",\"volume\":\"6 3\",\"pages\":\"Pages 455-465\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and Built Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666123324000096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Built Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666123324000096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermal energy storage materials designed from recycled Tetra Pak waste and paraffin waxes with enhanced photothermal conversion efficiencies

Thermal energy storage materials designed from recycled Tetra Pak waste and paraffin waxes with enhanced photothermal conversion efficiencies
The phase change material (PCM)-integrated solar water heaters have great potential to save energy by utilizing renewable resources and to extend working hours even after sunsets. The PCM composites fabricated with recycled waste products lead to the circular economy which would contribute significantly to the sustainable development goals. In this work, Tetra Pak waste (TP) was used to prepare a form-stable PCM composite by mixing with paraffin wax (PW) and expanded graphite (EG) to integrate with solar water heaters. Two different PWs with melting points of 44 (RT44) and 64 (RT64) were used in the lower and higher temperature ranges of domestic water heating applications, respectively. The prepared composites exhibited enhanced thermal conductivity (1.1–1.15 W/m °C), heat storage capacity (98.5–105.6 J/g), and photothermal conversion efficiency (85 % and 55 % for composites with RT44 and RT64, respectively). The numerical analysis conducted on a validated model helped to estimate the optimum composite thickness for specific solar exposure time. The fabricated PCM composite promoted the recycling of TP waste into useful products and was efficient in maintaining a higher nocturnal water temperature in the solar water heater.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy and Built Environment
Energy and Built Environment Engineering-Building and Construction
CiteScore
15.90
自引率
0.00%
发文量
104
审稿时长
49 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信