{"title":"爱因斯坦方程的球对称非静态解","authors":"Yu. P. Vyblyi, A. A. Leonovich","doi":"10.29235/1561-2430-2023-59-4-308-314","DOIUrl":null,"url":null,"abstract":"In this paper, we considered non-static vacuum spherically symmetric solutions of the Einstein equations and harmonicity conditions in the coordinate system with a non-zero space-time component in the metric. For the case of the weak field, a particular solution of the approximate equations was obtained, which corresponds to a nonstatic source whose boundary moves with a constant speed. For the exact Einstein’s equations we obtained a wave-type solution, determined by two implicitly specified functions, depending on the retarded argument and on the radial coordinate, respectively. The connection between these solutions and the Birkhoff theorem is discussed.","PeriodicalId":516297,"journal":{"name":"Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series","volume":"27 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spherically-symmetric non-static solutions of Einstein’s equations\",\"authors\":\"Yu. P. Vyblyi, A. A. Leonovich\",\"doi\":\"10.29235/1561-2430-2023-59-4-308-314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we considered non-static vacuum spherically symmetric solutions of the Einstein equations and harmonicity conditions in the coordinate system with a non-zero space-time component in the metric. For the case of the weak field, a particular solution of the approximate equations was obtained, which corresponds to a nonstatic source whose boundary moves with a constant speed. For the exact Einstein’s equations we obtained a wave-type solution, determined by two implicitly specified functions, depending on the retarded argument and on the radial coordinate, respectively. The connection between these solutions and the Birkhoff theorem is discussed.\",\"PeriodicalId\":516297,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series\",\"volume\":\"27 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29235/1561-2430-2023-59-4-308-314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-2430-2023-59-4-308-314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spherically-symmetric non-static solutions of Einstein’s equations
In this paper, we considered non-static vacuum spherically symmetric solutions of the Einstein equations and harmonicity conditions in the coordinate system with a non-zero space-time component in the metric. For the case of the weak field, a particular solution of the approximate equations was obtained, which corresponds to a nonstatic source whose boundary moves with a constant speed. For the exact Einstein’s equations we obtained a wave-type solution, determined by two implicitly specified functions, depending on the retarded argument and on the radial coordinate, respectively. The connection between these solutions and the Birkhoff theorem is discussed.