EGFormer:用于交通流量预测的带有高效关注机制的增强型变压器模型

Vehicles Pub Date : 2024-01-06 DOI:10.3390/vehicles6010005
Zhihui Yang, Qingyong Zhang, Wanfeng Chang, Peng Xiao, Minglong Li
{"title":"EGFormer:用于交通流量预测的带有高效关注机制的增强型变压器模型","authors":"Zhihui Yang, Qingyong Zhang, Wanfeng Chang, Peng Xiao, Minglong Li","doi":"10.3390/vehicles6010005","DOIUrl":null,"url":null,"abstract":"Due to the regular influence of human activities, traffic flow data usually exhibit significant periodicity, which provides a foundation for further research on traffic flow data. However, the temporal dependencies in traffic flow data are often obscured by entangled temporal regularities, making it challenging for general models to capture the intrinsic functional relationships within the data accurately. In recent years, a plethora of methods based on statistics, machine learning, and deep learning have been proposed to tackle these problems of traffic flow forecasting. In this paper, the Transformer is improved from two aspects: (1) an Efficient Attention mechanism is proposed, which reduces the time and memory complexity of the Scaled Dot Product Attention; (2) a Generative Decoding mechanism instead of a Dynamic Decoding operation, which accelerates the inference speed of the model. The model is named EGFormer in this paper. Through a lot of experiments and comparative analysis, the authors found that the EGFormer has better ability in the traffic flow forecasting task. The new model has higher prediction accuracy and shorter running time compared with the traditional model.","PeriodicalId":509694,"journal":{"name":"Vehicles","volume":"34 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EGFormer: An Enhanced Transformer Model with Efficient Attention Mechanism for Traffic Flow Forecasting\",\"authors\":\"Zhihui Yang, Qingyong Zhang, Wanfeng Chang, Peng Xiao, Minglong Li\",\"doi\":\"10.3390/vehicles6010005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the regular influence of human activities, traffic flow data usually exhibit significant periodicity, which provides a foundation for further research on traffic flow data. However, the temporal dependencies in traffic flow data are often obscured by entangled temporal regularities, making it challenging for general models to capture the intrinsic functional relationships within the data accurately. In recent years, a plethora of methods based on statistics, machine learning, and deep learning have been proposed to tackle these problems of traffic flow forecasting. In this paper, the Transformer is improved from two aspects: (1) an Efficient Attention mechanism is proposed, which reduces the time and memory complexity of the Scaled Dot Product Attention; (2) a Generative Decoding mechanism instead of a Dynamic Decoding operation, which accelerates the inference speed of the model. The model is named EGFormer in this paper. Through a lot of experiments and comparative analysis, the authors found that the EGFormer has better ability in the traffic flow forecasting task. The new model has higher prediction accuracy and shorter running time compared with the traditional model.\",\"PeriodicalId\":509694,\"journal\":{\"name\":\"Vehicles\",\"volume\":\"34 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vehicles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/vehicles6010005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vehicles6010005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于人类活动的规律性影响,交通流数据通常表现出明显的周期性,这为进一步研究交通流数据提供了基础。然而,交通流数据中的时间依赖性往往被纠缠不清的时间规律性所掩盖,使得一般模型难以准确捕捉数据中的内在函数关系。近年来,人们提出了大量基于统计学、机器学习和深度学习的方法来解决交通流预测的这些问题。本文从两个方面对 Transformer 进行了改进:(1)提出了高效注意力机制,降低了缩放点积注意力的时间和内存复杂度;(2)用生成解码机制代替动态解码操作,加快了模型的推理速度。本文将该模型命名为 EGFormer。通过大量实验和对比分析,作者发现 EGFormer 在交通流预测任务中具有更好的能力。与传统模型相比,新模型具有更高的预测精度和更短的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EGFormer: An Enhanced Transformer Model with Efficient Attention Mechanism for Traffic Flow Forecasting
Due to the regular influence of human activities, traffic flow data usually exhibit significant periodicity, which provides a foundation for further research on traffic flow data. However, the temporal dependencies in traffic flow data are often obscured by entangled temporal regularities, making it challenging for general models to capture the intrinsic functional relationships within the data accurately. In recent years, a plethora of methods based on statistics, machine learning, and deep learning have been proposed to tackle these problems of traffic flow forecasting. In this paper, the Transformer is improved from two aspects: (1) an Efficient Attention mechanism is proposed, which reduces the time and memory complexity of the Scaled Dot Product Attention; (2) a Generative Decoding mechanism instead of a Dynamic Decoding operation, which accelerates the inference speed of the model. The model is named EGFormer in this paper. Through a lot of experiments and comparative analysis, the authors found that the EGFormer has better ability in the traffic flow forecasting task. The new model has higher prediction accuracy and shorter running time compared with the traditional model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信