正在进行的国际板球一日赛胜负预测

Pub Date : 2024-01-09 DOI:10.3233/jsa-220735
Yash Agrawal, Kundan Kandhway
{"title":"正在进行的国际板球一日赛胜负预测","authors":"Yash Agrawal, Kundan Kandhway","doi":"10.3233/jsa-220735","DOIUrl":null,"url":null,"abstract":"Cricket is a team sport with an intricate set of rules, where players specialize in multiple skills such as batting, bowling, and fielding. Playing conditions and home advantage also impact the game. Thus, it is quite challenging to build an accurate quantitative model for the game. In this paper, we provide a data driven approach to predict the winner of a cricket match. We divide the ongoing match into various states and provide a prediction for each state using supervised machine learning models. We employ dynamic features that account for the current match situation, together with the static features like team strength, winner of the toss, and the home advantage. We also use SHAP scores—an explainable AI technique—to interpret the proposed prediction model. We use ball-by-ball data from 1359 men’s one day international cricket matches played between January 2004 to January 2022 to present our results. We achieved the best in-play prediction accuracy of about 85% . SHAP scores reveal that during initial phases of the match, the model treats static features like team strength more important than others, in making the predictions. But as the match progresses, dynamic features capturing the current match situation become exceedingly important. Our work may be useful in preparing tools for in-play winner prediction for live cricket matches that can be used in websites and mobile applications covering the sport, in providing analytics during live television commentary, and in legal betting platforms.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Winner prediction in an ongoing one day international cricket match\",\"authors\":\"Yash Agrawal, Kundan Kandhway\",\"doi\":\"10.3233/jsa-220735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cricket is a team sport with an intricate set of rules, where players specialize in multiple skills such as batting, bowling, and fielding. Playing conditions and home advantage also impact the game. Thus, it is quite challenging to build an accurate quantitative model for the game. In this paper, we provide a data driven approach to predict the winner of a cricket match. We divide the ongoing match into various states and provide a prediction for each state using supervised machine learning models. We employ dynamic features that account for the current match situation, together with the static features like team strength, winner of the toss, and the home advantage. We also use SHAP scores—an explainable AI technique—to interpret the proposed prediction model. We use ball-by-ball data from 1359 men’s one day international cricket matches played between January 2004 to January 2022 to present our results. We achieved the best in-play prediction accuracy of about 85% . SHAP scores reveal that during initial phases of the match, the model treats static features like team strength more important than others, in making the predictions. But as the match progresses, dynamic features capturing the current match situation become exceedingly important. Our work may be useful in preparing tools for in-play winner prediction for live cricket matches that can be used in websites and mobile applications covering the sport, in providing analytics during live television commentary, and in legal betting platforms.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jsa-220735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jsa-220735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

板球是一项团队运动,有一套复杂的规则,球员擅长多种技能,如击球、保龄球和出界。比赛条件和主场优势也会对比赛产生影响。因此,为比赛建立一个精确的量化模型是一项相当具有挑战性的工作。在本文中,我们提供了一种数据驱动的方法来预测板球比赛的胜负。我们将正在进行的比赛分为不同的状态,并使用有监督的机器学习模型对每种状态进行预测。我们采用了能反映当前比赛形势的动态特征,以及球队实力、掷球胜者和主场优势等静态特征。我们还使用 SHAP 分数--一种可解释的人工智能技术--来解释所提出的预测模型。我们使用 2004 年 1 月至 2022 年 1 月期间举行的 1359 场男子国际板球一日赛的逐球数据来展示我们的结果。我们取得了约 85% 的最佳赛中预测准确率。SHAP 评分显示,在比赛的初始阶段,模型在进行预测时会将球队实力等静态特征看得比其他特征更重要。但随着比赛的进行,捕捉当前比赛形势的动态特征变得异常重要。我们的工作可能有助于为板球比赛现场胜负预测准备工具,这些工具可用于报道这项运动的网站和移动应用程序、在电视直播评论中提供分析以及合法投注平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Winner prediction in an ongoing one day international cricket match
Cricket is a team sport with an intricate set of rules, where players specialize in multiple skills such as batting, bowling, and fielding. Playing conditions and home advantage also impact the game. Thus, it is quite challenging to build an accurate quantitative model for the game. In this paper, we provide a data driven approach to predict the winner of a cricket match. We divide the ongoing match into various states and provide a prediction for each state using supervised machine learning models. We employ dynamic features that account for the current match situation, together with the static features like team strength, winner of the toss, and the home advantage. We also use SHAP scores—an explainable AI technique—to interpret the proposed prediction model. We use ball-by-ball data from 1359 men’s one day international cricket matches played between January 2004 to January 2022 to present our results. We achieved the best in-play prediction accuracy of about 85% . SHAP scores reveal that during initial phases of the match, the model treats static features like team strength more important than others, in making the predictions. But as the match progresses, dynamic features capturing the current match situation become exceedingly important. Our work may be useful in preparing tools for in-play winner prediction for live cricket matches that can be used in websites and mobile applications covering the sport, in providing analytics during live television commentary, and in legal betting platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信