构建和验证自动时间标签心音分割方法

Liuying Li, Min Huang, Lin Dao, Xixi Feng, Yifeng Liu, Changyou Wei, Fangfang Liu, Jing Zhang, Fan Xu
{"title":"构建和验证自动时间标签心音分割方法","authors":"Liuying Li, Min Huang, Lin Dao, Xixi Feng, Yifeng Liu, Changyou Wei, Fangfang Liu, Jing Zhang, Fan Xu","doi":"10.3389/frai.2023.1309750","DOIUrl":null,"url":null,"abstract":"Heart sound detection technology plays an important role in the prediction of cardiovascular disease, but the most significant heart sounds are fleeting and may be imperceptible. Hence, obtaining heart sound information in an efficient and accurate manner will be helpful for the prediction and diagnosis of heart disease. To obtain heart sound information, we designed an audio data analysis tool to segment the heart sounds from single heart cycle, and validated the heart rate using a finger oxygen meter. The results from our validated technique could be used to realize heart sound segmentation. Our robust algorithmic platform was able to segment the heart sounds, which could then be compared in terms of their difference from the background. A combination of an electronic stethoscope and artificial intelligence technology was used for the digital collection of heart sounds and the intelligent identification of the first (S1) and second (S2) heart sounds. Our approach can provide an objective basis for the auscultation of heart sounds and visual display of heart sounds and murmurs.","PeriodicalId":508738,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction and validation of a method for automated time label segmentation of heart sounds\",\"authors\":\"Liuying Li, Min Huang, Lin Dao, Xixi Feng, Yifeng Liu, Changyou Wei, Fangfang Liu, Jing Zhang, Fan Xu\",\"doi\":\"10.3389/frai.2023.1309750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart sound detection technology plays an important role in the prediction of cardiovascular disease, but the most significant heart sounds are fleeting and may be imperceptible. Hence, obtaining heart sound information in an efficient and accurate manner will be helpful for the prediction and diagnosis of heart disease. To obtain heart sound information, we designed an audio data analysis tool to segment the heart sounds from single heart cycle, and validated the heart rate using a finger oxygen meter. The results from our validated technique could be used to realize heart sound segmentation. Our robust algorithmic platform was able to segment the heart sounds, which could then be compared in terms of their difference from the background. A combination of an electronic stethoscope and artificial intelligence technology was used for the digital collection of heart sounds and the intelligent identification of the first (S1) and second (S2) heart sounds. Our approach can provide an objective basis for the auscultation of heart sounds and visual display of heart sounds and murmurs.\",\"PeriodicalId\":508738,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2023.1309750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2023.1309750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心音检测技术在预测心血管疾病方面发挥着重要作用,但最重要的心音转瞬即逝,可能无法察觉。因此,高效、准确地获取心音信息将有助于心脏病的预测和诊断。为了获取心音信息,我们设计了一种音频数据分析工具,用于从单次心动周期中分割心音,并使用指血氧仪验证心率。我们验证技术的结果可用于实现心音分割。我们的强大算法平台能够分割心音,然后比较心音与背景的差异。电子听诊器与人工智能技术相结合,用于心音的数字化采集以及第一(S1)和第二(S2)心音的智能识别。我们的方法可为听诊心音以及心音和杂音的视觉显示提供客观依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction and validation of a method for automated time label segmentation of heart sounds
Heart sound detection technology plays an important role in the prediction of cardiovascular disease, but the most significant heart sounds are fleeting and may be imperceptible. Hence, obtaining heart sound information in an efficient and accurate manner will be helpful for the prediction and diagnosis of heart disease. To obtain heart sound information, we designed an audio data analysis tool to segment the heart sounds from single heart cycle, and validated the heart rate using a finger oxygen meter. The results from our validated technique could be used to realize heart sound segmentation. Our robust algorithmic platform was able to segment the heart sounds, which could then be compared in terms of their difference from the background. A combination of an electronic stethoscope and artificial intelligence technology was used for the digital collection of heart sounds and the intelligent identification of the first (S1) and second (S2) heart sounds. Our approach can provide an objective basis for the auscultation of heart sounds and visual display of heart sounds and murmurs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信