{"title":"基于深度学习的机器人分析模型,在公共管理中利用预测模型捕捉语义内涵","authors":"Zixuan Li, Chengli Wang","doi":"10.4018/jgim.335900","DOIUrl":null,"url":null,"abstract":"In the realm of robotics, the ability to comprehend intricate semantic contexts within diverse environments is paramount for autonomous decision-making and effective human-robot collaboration. This article delves into the realm of enhancing robotic semantic understanding through the fusion of deep learning techniques. This work presents a pioneering approach: integrating several neural network models to analyze robot images, thereby capturing nuanced environmental semantic contexts. The authors augment this analysis with predictive models, enabling the robot to adapt the changing contexts intelligently. Through rigorous experimentation, our model demonstrated a substantial 25% increase in accuracy when compared to conventional methods, showcasing its robustness in real-world applications. This research marks a significant stride toward imbuing robots with sophisticated visual comprehension, paving the way for more seamless human-robot interactions and a myriad of practical applications in the evolving landscape of robotics.","PeriodicalId":46306,"journal":{"name":"Journal of Global Information Management","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Learning-Based Robot Analysis Model for Semantic Context Capturing by Using Predictive Models in Public Management\",\"authors\":\"Zixuan Li, Chengli Wang\",\"doi\":\"10.4018/jgim.335900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the realm of robotics, the ability to comprehend intricate semantic contexts within diverse environments is paramount for autonomous decision-making and effective human-robot collaboration. This article delves into the realm of enhancing robotic semantic understanding through the fusion of deep learning techniques. This work presents a pioneering approach: integrating several neural network models to analyze robot images, thereby capturing nuanced environmental semantic contexts. The authors augment this analysis with predictive models, enabling the robot to adapt the changing contexts intelligently. Through rigorous experimentation, our model demonstrated a substantial 25% increase in accuracy when compared to conventional methods, showcasing its robustness in real-world applications. This research marks a significant stride toward imbuing robots with sophisticated visual comprehension, paving the way for more seamless human-robot interactions and a myriad of practical applications in the evolving landscape of robotics.\",\"PeriodicalId\":46306,\"journal\":{\"name\":\"Journal of Global Information Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Global Information Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.4018/jgim.335900\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Information Management","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.4018/jgim.335900","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
A Deep Learning-Based Robot Analysis Model for Semantic Context Capturing by Using Predictive Models in Public Management
In the realm of robotics, the ability to comprehend intricate semantic contexts within diverse environments is paramount for autonomous decision-making and effective human-robot collaboration. This article delves into the realm of enhancing robotic semantic understanding through the fusion of deep learning techniques. This work presents a pioneering approach: integrating several neural network models to analyze robot images, thereby capturing nuanced environmental semantic contexts. The authors augment this analysis with predictive models, enabling the robot to adapt the changing contexts intelligently. Through rigorous experimentation, our model demonstrated a substantial 25% increase in accuracy when compared to conventional methods, showcasing its robustness in real-world applications. This research marks a significant stride toward imbuing robots with sophisticated visual comprehension, paving the way for more seamless human-robot interactions and a myriad of practical applications in the evolving landscape of robotics.
期刊介绍:
Authors are encouraged to submit manuscripts that are consistent to the following submission themes: (a) Cross-National Studies. These need not be cross-culture per se. These studies lead to understanding of IT as it leaves one nation and is built/bought/used in another. Generally, these studies bring to light transferability issues and they challenge if practices in one nation transfer. (b) Cross-Cultural Studies. These need not be cross-nation. Cultures could be across regions that share a similar culture. They can also be within nations. These studies lead to understanding of IT as it leaves one culture and is built/bought/used in another. Generally, these studies bring to light transferability issues and they challenge if practices in one culture transfer.