双通道电化学放电加工的特点与改进

IF 1.9 3区 工程技术 Q3 ENGINEERING, MANUFACTURING
S. Elhami Joosheghan, P. Rezvani, Mohammad Reza Razfar
{"title":"双通道电化学放电加工的特点与改进","authors":"S. Elhami Joosheghan, P. Rezvani, Mohammad Reza Razfar","doi":"10.1177/09544054231222049","DOIUrl":null,"url":null,"abstract":"Glass and ceramics have broad applications in modern industries; however, unique properties such as brittleness, and low machinability limit their fabrication processes. This way, electro-chemical discharge machining (ECDM) is a new method that can shape hard, brittle, and non-conductive materials. ECDM improvement is the subject of recent investigations through the application of chemical and physical phenomena. Current research studies the accuracy and surface integrity (cracks and HAZ) aspects of the double-pass ECDM process (DP) which is a new and straightforward method. During the double-pass process, two sequential passes are employed to shape the final geometry. In addition, the variable voltage technique is studied to achieve higher machining efficiency in DP. Results showed that in the diameter difference of 100 µm, the double-pass process reduced overcut by up to 21% compared to the typical ECDM process. Also, the size and number of cracks and the extent of HAZ were significantly decreased. Finally, in the diameter difference larger than 300 μm (the constant voltage of 32 V), the enhancement modification (variable voltage) reduced the overcut by more than 80%. At the same time, depth results remained close (less than 5% difference) to the simple ECDM process.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristics and improvement of the double-pass electro-chemical discharge machining\",\"authors\":\"S. Elhami Joosheghan, P. Rezvani, Mohammad Reza Razfar\",\"doi\":\"10.1177/09544054231222049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glass and ceramics have broad applications in modern industries; however, unique properties such as brittleness, and low machinability limit their fabrication processes. This way, electro-chemical discharge machining (ECDM) is a new method that can shape hard, brittle, and non-conductive materials. ECDM improvement is the subject of recent investigations through the application of chemical and physical phenomena. Current research studies the accuracy and surface integrity (cracks and HAZ) aspects of the double-pass ECDM process (DP) which is a new and straightforward method. During the double-pass process, two sequential passes are employed to shape the final geometry. In addition, the variable voltage technique is studied to achieve higher machining efficiency in DP. Results showed that in the diameter difference of 100 µm, the double-pass process reduced overcut by up to 21% compared to the typical ECDM process. Also, the size and number of cracks and the extent of HAZ were significantly decreased. Finally, in the diameter difference larger than 300 μm (the constant voltage of 32 V), the enhancement modification (variable voltage) reduced the overcut by more than 80%. At the same time, depth results remained close (less than 5% difference) to the simple ECDM process.\",\"PeriodicalId\":20663,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544054231222049\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054231222049","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

玻璃和陶瓷在现代工业中有着广泛的应用;然而,脆性和低可加工性等独特性质限制了它们的制造工艺。因此,电化学放电加工(ECDM)是一种可以对硬、脆和非导电材料进行加工的新方法。通过应用化学和物理现象改进 ECDM 是近期研究的主题。目前的研究对双程 ECDM 工艺(DP)的精度和表面完整性(裂纹和热影响区)进行了研究,这是一种新的直接方法。在双程工艺中,采用了两个连续的程来塑造最终的几何形状。此外,还研究了变电压技术,以提高 DP 的加工效率。结果表明,在直径相差 100 微米的情况下,与典型的 ECDM 工艺相比,双程工艺最多可减少 21% 的过切。此外,裂纹的尺寸和数量以及热影响区的范围也显著减少。最后,在直径差大于 300 μm(恒定电压为 32 V)的情况下,增强改性(可变电压)使过切削减少了 80% 以上。同时,深度结果与简单的 ECDM 过程保持接近(差距小于 5%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characteristics and improvement of the double-pass electro-chemical discharge machining
Glass and ceramics have broad applications in modern industries; however, unique properties such as brittleness, and low machinability limit their fabrication processes. This way, electro-chemical discharge machining (ECDM) is a new method that can shape hard, brittle, and non-conductive materials. ECDM improvement is the subject of recent investigations through the application of chemical and physical phenomena. Current research studies the accuracy and surface integrity (cracks and HAZ) aspects of the double-pass ECDM process (DP) which is a new and straightforward method. During the double-pass process, two sequential passes are employed to shape the final geometry. In addition, the variable voltage technique is studied to achieve higher machining efficiency in DP. Results showed that in the diameter difference of 100 µm, the double-pass process reduced overcut by up to 21% compared to the typical ECDM process. Also, the size and number of cracks and the extent of HAZ were significantly decreased. Finally, in the diameter difference larger than 300 μm (the constant voltage of 32 V), the enhancement modification (variable voltage) reduced the overcut by more than 80%. At the same time, depth results remained close (less than 5% difference) to the simple ECDM process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
30.80%
发文量
167
审稿时长
5.1 months
期刊介绍: Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed. Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing. Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信