铁电畴壁存储器路线图

Jie Sun, Yiming Li, Di Hu, Bowen Shen, Boyang Zhang, Zilong Wang, Haiyue Tang, Anquan Jiang
{"title":"铁电畴壁存储器路线图","authors":"Jie Sun, Yiming Li, Di Hu, Bowen Shen, Boyang Zhang, Zilong Wang, Haiyue Tang, Anquan Jiang","doi":"10.20517/microstructures.2023.52","DOIUrl":null,"url":null,"abstract":"Commercial nonvolatile Ferroelectric Random Access Memory employs a destructive readout scheme based on charge sensing, which limits its cell scalability in sizes above 100 nm. Ferroelectric domain walls are two-dimensional topological interfaces with thicknesses approaching the unit cell level between two antiparallel domains and exhibit electrical conductivity, distinguishing them from insulating matrices that are uniformly ordered. Recently, novel research has been devoted to utilizing this extraordinary interface for the application in nonvolatile memory with nanometer-sized scalability and low energy consumption. Here, we pay more attention to the development of the domain wall memory technologies in the future with challenges and opportunities to design planar and vertical arrays of the memory cells in the CMOS platform.","PeriodicalId":515723,"journal":{"name":"Microstructures","volume":"51 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Roadmap for ferroelectric domain wall memory\",\"authors\":\"Jie Sun, Yiming Li, Di Hu, Bowen Shen, Boyang Zhang, Zilong Wang, Haiyue Tang, Anquan Jiang\",\"doi\":\"10.20517/microstructures.2023.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Commercial nonvolatile Ferroelectric Random Access Memory employs a destructive readout scheme based on charge sensing, which limits its cell scalability in sizes above 100 nm. Ferroelectric domain walls are two-dimensional topological interfaces with thicknesses approaching the unit cell level between two antiparallel domains and exhibit electrical conductivity, distinguishing them from insulating matrices that are uniformly ordered. Recently, novel research has been devoted to utilizing this extraordinary interface for the application in nonvolatile memory with nanometer-sized scalability and low energy consumption. Here, we pay more attention to the development of the domain wall memory technologies in the future with challenges and opportunities to design planar and vertical arrays of the memory cells in the CMOS platform.\",\"PeriodicalId\":515723,\"journal\":{\"name\":\"Microstructures\",\"volume\":\"51 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microstructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/microstructures.2023.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microstructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/microstructures.2023.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

商用非易失性铁电随机存取存储器采用基于电荷感应的破坏性读出方案,这限制了其单元在 100 纳米以上尺寸的可扩展性。铁电畴壁是二维拓扑界面,厚度接近两个反平行畴之间的单胞水平,具有导电性,有别于均匀有序的绝缘基质。最近,人们致力于利用这种非凡的界面,将其应用于具有纳米级可扩展性和低能耗的非易失性存储器。在此,我们将更加关注未来域壁存储器技术的发展,以及在 CMOS 平台上设计平面和垂直阵列存储器单元所面临的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Roadmap for ferroelectric domain wall memory
Commercial nonvolatile Ferroelectric Random Access Memory employs a destructive readout scheme based on charge sensing, which limits its cell scalability in sizes above 100 nm. Ferroelectric domain walls are two-dimensional topological interfaces with thicknesses approaching the unit cell level between two antiparallel domains and exhibit electrical conductivity, distinguishing them from insulating matrices that are uniformly ordered. Recently, novel research has been devoted to utilizing this extraordinary interface for the application in nonvolatile memory with nanometer-sized scalability and low energy consumption. Here, we pay more attention to the development of the domain wall memory technologies in the future with challenges and opportunities to design planar and vertical arrays of the memory cells in the CMOS platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信