{"title":"推荐算法","authors":"Tiago Franklin Rodrigues Lucena, Eduarda Carretero Garcia, Mariana Maronezzi Brezovsky, Thiago Fanelli Ferraiol","doi":"10.22475/rebeca.v12n2.898","DOIUrl":null,"url":null,"abstract":"As produções audiovisuais visualizadas por cada usuário na plataforma de streaming Netflix são baseadas, em parte, nos dados coletados, tratados e arquivados sobre como e o que foi consumido anteriormente por ele e por outros usuários. As sugestões de novos conteúdos são efetuadas por sistemas de recomendação e são operacionalizadas por um conjunto de algoritmos, que por muitas vezes são mantidos em segredo comercial. A Netflix, em seu site, propõe uma “uma descrição de alto nível” sobre o sistema de recomendação “em uma linguagem para leigos”. Este artigo analisa como esse texto explicita o funcionamento dessas ferramentas, articulando-o com autores que já fizeram parte do grupo de programadores da plataforma, outros críticos, e especialistas em algoritmos de recomendação. A análise demonstrou que, a partir da coleta de poucos dados do usuário, especialmente se comprado com o volume geralmente extraído de sites de redes sociais, é possível efetivar seu elaborado sistema de recomendação de forma personalizada. Os dados coletados se comportam como um “padrão de inclusão” e se constituem em matéria prima de um banco de dados que alimenta o sistema, criando um complexo perfil personalizado para cada indivíduo. Esse perfil é o que recomenda novos títulos no sistema de busca e orienta, principalmente, a posição do item nas fileiras na interface inicial. Por fim, a posição do título na interface e a fileira da qual faz parte influenciam significativamente na escolha da produção, o que tem consequências no contato com a diversidade de produtos audiovisuais, na manutenção da assinatura, e na experiência de consumo na plataforma.","PeriodicalId":325217,"journal":{"name":"Rebeca - Revista Brasileira de Estudos de Cinema e Audiovisual","volume":"21 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algoritmos de recomendação\",\"authors\":\"Tiago Franklin Rodrigues Lucena, Eduarda Carretero Garcia, Mariana Maronezzi Brezovsky, Thiago Fanelli Ferraiol\",\"doi\":\"10.22475/rebeca.v12n2.898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As produções audiovisuais visualizadas por cada usuário na plataforma de streaming Netflix são baseadas, em parte, nos dados coletados, tratados e arquivados sobre como e o que foi consumido anteriormente por ele e por outros usuários. As sugestões de novos conteúdos são efetuadas por sistemas de recomendação e são operacionalizadas por um conjunto de algoritmos, que por muitas vezes são mantidos em segredo comercial. A Netflix, em seu site, propõe uma “uma descrição de alto nível” sobre o sistema de recomendação “em uma linguagem para leigos”. Este artigo analisa como esse texto explicita o funcionamento dessas ferramentas, articulando-o com autores que já fizeram parte do grupo de programadores da plataforma, outros críticos, e especialistas em algoritmos de recomendação. A análise demonstrou que, a partir da coleta de poucos dados do usuário, especialmente se comprado com o volume geralmente extraído de sites de redes sociais, é possível efetivar seu elaborado sistema de recomendação de forma personalizada. Os dados coletados se comportam como um “padrão de inclusão” e se constituem em matéria prima de um banco de dados que alimenta o sistema, criando um complexo perfil personalizado para cada indivíduo. Esse perfil é o que recomenda novos títulos no sistema de busca e orienta, principalmente, a posição do item nas fileiras na interface inicial. Por fim, a posição do título na interface e a fileira da qual faz parte influenciam significativamente na escolha da produção, o que tem consequências no contato com a diversidade de produtos audiovisuais, na manutenção da assinatura, e na experiência de consumo na plataforma.\",\"PeriodicalId\":325217,\"journal\":{\"name\":\"Rebeca - Revista Brasileira de Estudos de Cinema e Audiovisual\",\"volume\":\"21 13\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rebeca - Revista Brasileira de Estudos de Cinema e Audiovisual\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22475/rebeca.v12n2.898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rebeca - Revista Brasileira de Estudos de Cinema e Audiovisual","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22475/rebeca.v12n2.898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
As produções audiovisuais visualizadas por cada usuário na plataforma de streaming Netflix são baseadas, em parte, nos dados coletados, tratados e arquivados sobre como e o que foi consumido anteriormente por ele e por outros usuários. As sugestões de novos conteúdos são efetuadas por sistemas de recomendação e são operacionalizadas por um conjunto de algoritmos, que por muitas vezes são mantidos em segredo comercial. A Netflix, em seu site, propõe uma “uma descrição de alto nível” sobre o sistema de recomendação “em uma linguagem para leigos”. Este artigo analisa como esse texto explicita o funcionamento dessas ferramentas, articulando-o com autores que já fizeram parte do grupo de programadores da plataforma, outros críticos, e especialistas em algoritmos de recomendação. A análise demonstrou que, a partir da coleta de poucos dados do usuário, especialmente se comprado com o volume geralmente extraído de sites de redes sociais, é possível efetivar seu elaborado sistema de recomendação de forma personalizada. Os dados coletados se comportam como um “padrão de inclusão” e se constituem em matéria prima de um banco de dados que alimenta o sistema, criando um complexo perfil personalizado para cada indivíduo. Esse perfil é o que recomenda novos títulos no sistema de busca e orienta, principalmente, a posição do item nas fileiras na interface inicial. Por fim, a posição do título na interface e a fileira da qual faz parte influenciam significativamente na escolha da produção, o que tem consequências no contato com a diversidade de produtos audiovisuais, na manutenção da assinatura, e na experiência de consumo na plataforma.