深度学习在股市预测中的应用:新交所和纽交所神经网络架构对比分析

Bishnu Padh Ghosh, Mohammad Shafiquzzaman Bhuiyan, Debashish Das, Tuan Ngoc Nguyen, Mahmud Jewel, Md Tuhin Mia, Duc M Cao
{"title":"深度学习在股市预测中的应用:新交所和纽交所神经网络架构对比分析","authors":"Bishnu Padh Ghosh, Mohammad Shafiquzzaman Bhuiyan, Debashish Das, Tuan Ngoc Nguyen, Mahmud Jewel, Md Tuhin Mia, Duc M Cao","doi":"10.32996/jcsts.2024.6.1.8","DOIUrl":null,"url":null,"abstract":"This research explores the application of four deep learning architectures—Multilayer Perceptron (MLP), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Convolutional Neural Networks (CNN)—in predicting stock prices using historical data. Focusing on day-wise closing prices from the National Stock Exchange (NSE) of India and the New York Stock Exchange (NYSE), the study trains the neural network on NSE data and tests it on both NSE and NYSE stocks. Surprisingly, the CNN model outperforms the others, successfully predicting NYSE stock prices despite being trained on NSE data. Comparative analysis against the ARIMA model underscores the superior performance of neural networks, emphasizing their potential in forecasting stock market trends. This research sheds light on the shared underlying dynamics between distinct markets and demonstrates the efficacy of deep learning architectures in stock price prediction.","PeriodicalId":417206,"journal":{"name":"Journal of Computer Science and Technology Studies","volume":"17 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning in Stock Market Forecasting: Comparative Analysis of Neural Network Architectures Across NSE and NYSE\",\"authors\":\"Bishnu Padh Ghosh, Mohammad Shafiquzzaman Bhuiyan, Debashish Das, Tuan Ngoc Nguyen, Mahmud Jewel, Md Tuhin Mia, Duc M Cao\",\"doi\":\"10.32996/jcsts.2024.6.1.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research explores the application of four deep learning architectures—Multilayer Perceptron (MLP), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Convolutional Neural Networks (CNN)—in predicting stock prices using historical data. Focusing on day-wise closing prices from the National Stock Exchange (NSE) of India and the New York Stock Exchange (NYSE), the study trains the neural network on NSE data and tests it on both NSE and NYSE stocks. Surprisingly, the CNN model outperforms the others, successfully predicting NYSE stock prices despite being trained on NSE data. Comparative analysis against the ARIMA model underscores the superior performance of neural networks, emphasizing their potential in forecasting stock market trends. This research sheds light on the shared underlying dynamics between distinct markets and demonstrates the efficacy of deep learning architectures in stock price prediction.\",\"PeriodicalId\":417206,\"journal\":{\"name\":\"Journal of Computer Science and Technology Studies\",\"volume\":\"17 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Technology Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32996/jcsts.2024.6.1.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32996/jcsts.2024.6.1.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了四种深度学习架构--多层感知器(MLP)、递归神经网络(RNN)、长短期记忆(LSTM)和卷积神经网络(CNN)--在利用历史数据预测股票价格方面的应用。研究以印度国家证券交易所(NSE)和纽约证券交易所(NYSE)的当日收盘价为重点,在 NSE 数据上训练神经网络,并在 NSE 和 NYSE 股票上进行测试。令人惊讶的是,CNN 模型的表现优于其他模型,尽管是在 NSE 数据上训练的,但它成功地预测了纽约证券交易所的股票价格。与 ARIMA 模型的对比分析凸显了神经网络的卓越性能,强调了其在预测股市趋势方面的潜力。这项研究揭示了不同市场之间的共同基本动态,并证明了深度学习架构在预测股票价格方面的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning in Stock Market Forecasting: Comparative Analysis of Neural Network Architectures Across NSE and NYSE
This research explores the application of four deep learning architectures—Multilayer Perceptron (MLP), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Convolutional Neural Networks (CNN)—in predicting stock prices using historical data. Focusing on day-wise closing prices from the National Stock Exchange (NSE) of India and the New York Stock Exchange (NYSE), the study trains the neural network on NSE data and tests it on both NSE and NYSE stocks. Surprisingly, the CNN model outperforms the others, successfully predicting NYSE stock prices despite being trained on NSE data. Comparative analysis against the ARIMA model underscores the superior performance of neural networks, emphasizing their potential in forecasting stock market trends. This research sheds light on the shared underlying dynamics between distinct markets and demonstrates the efficacy of deep learning architectures in stock price prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信