绿色金融、可持续技术创新与能效之间的关系

Q3 Environmental Science
Miaomiao Zhu
{"title":"绿色金融、可持续技术创新与能效之间的关系","authors":"Miaomiao Zhu","doi":"10.13052/spee1048-5236.43212","DOIUrl":null,"url":null,"abstract":"Sustainable technological innovation can promote this progress in finance. This optimization and upgrading of energy efficiency can provide a good energy environment for green development. The collaborative innovation of financial enterprises has brought such development to the tertiary industry, driving the upgrading of consumer demand, and thus promoting the development of green finance. At this same time, sustainable technological innovation will increase investment in environmental protection, reduce energy consumption, promote the reduction of carbon emissions in the financial industry, and accelerate the development of green finance. This paper uses the data envelopment analysis method to calculate the Marquis production efficiency index, examines the dynamic generation efficiency of intertemporal energy input and output, and calculates the energy efficiency of green finance. This article measures and deconstructs energy efficiency at the provincial level, and pays attention to its changes. The study depicted the efficiency distribution of 28 provinces in two stages of the survey period. By using random kernel estimation for two periods during the survey period, dynamic distribution three-dimensional maps and density contour maps of total factor energy productivity, energy utilization efficiency, and energy allocation efficiency growth rates were drawn for the two periods. The results show that the transfer probability group of energy efficiency and its decomposition terms mainly falls near the diagonal, indicating that TFP and its decomposition term growth rate have certain transferability. From 2005 to 2015, the energy utilization efficiency of the seven economic regions has been significantly improved, and the energy efficiency differences in different regions have gradually converged. The energy efficiency of the Yangtze River Delta and the Pearl River Delta is the highest and has been continuously improved, followed by the Beijing Delta, the central region, the northeast region and the southwest region are again in terms of energy efficiency. Compared with provinces with relatively poor industrial structures, provinces with better industrial structures do not have significant advantages in energy efficiency, while provinces with higher levels of technological innovation typically have relatively higher energy efficiency.","PeriodicalId":35712,"journal":{"name":"Strategic Planning for Energy and the Environment","volume":"84 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Relationship Between Green Finance, Sustainable Technological Innovation and Energy Efficiency\",\"authors\":\"Miaomiao Zhu\",\"doi\":\"10.13052/spee1048-5236.43212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sustainable technological innovation can promote this progress in finance. This optimization and upgrading of energy efficiency can provide a good energy environment for green development. The collaborative innovation of financial enterprises has brought such development to the tertiary industry, driving the upgrading of consumer demand, and thus promoting the development of green finance. At this same time, sustainable technological innovation will increase investment in environmental protection, reduce energy consumption, promote the reduction of carbon emissions in the financial industry, and accelerate the development of green finance. This paper uses the data envelopment analysis method to calculate the Marquis production efficiency index, examines the dynamic generation efficiency of intertemporal energy input and output, and calculates the energy efficiency of green finance. This article measures and deconstructs energy efficiency at the provincial level, and pays attention to its changes. The study depicted the efficiency distribution of 28 provinces in two stages of the survey period. By using random kernel estimation for two periods during the survey period, dynamic distribution three-dimensional maps and density contour maps of total factor energy productivity, energy utilization efficiency, and energy allocation efficiency growth rates were drawn for the two periods. The results show that the transfer probability group of energy efficiency and its decomposition terms mainly falls near the diagonal, indicating that TFP and its decomposition term growth rate have certain transferability. From 2005 to 2015, the energy utilization efficiency of the seven economic regions has been significantly improved, and the energy efficiency differences in different regions have gradually converged. The energy efficiency of the Yangtze River Delta and the Pearl River Delta is the highest and has been continuously improved, followed by the Beijing Delta, the central region, the northeast region and the southwest region are again in terms of energy efficiency. Compared with provinces with relatively poor industrial structures, provinces with better industrial structures do not have significant advantages in energy efficiency, while provinces with higher levels of technological innovation typically have relatively higher energy efficiency.\",\"PeriodicalId\":35712,\"journal\":{\"name\":\"Strategic Planning for Energy and the Environment\",\"volume\":\"84 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strategic Planning for Energy and the Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/spee1048-5236.43212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strategic Planning for Energy and the Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/spee1048-5236.43212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

可持续的技术创新可以促进金融的进步。这种能效的优化升级,可以为绿色发展提供良好的能源环境。金融企业的协同创新为第三产业带来了这样的发展,带动了消费需求的升级,进而推动了绿色金融的发展。同时,可持续的技术创新将加大环保投入,降低能源消耗,促进金融业减少碳排放,加快绿色金融的发展。本文运用数据包络分析法计算了马奎斯生产效率指数,考察了能源投入产出的跨时动态生成效率,计算了绿色金融的能源效率。本文对省级能源效率进行了测算和解构,并关注其变化。研究描绘了 28 个省份在两个调查阶段的能效分布。通过对调查期两个阶段的随机核估计,绘制了两个阶段全要素能源生产率、能源利用效率和能源配置效率增长率的动态分布立体图和密度等值线图。结果显示,能源效率及其分解项的转移概率群主要落在对角线附近,说明全要素生产率及其分解项增长率具有一定的转移性。从 2005 年到 2015 年,七大经济区的能源利用效率显著提高,不同地区的能源效率差异逐渐收敛。其中,长三角和珠三角的能源利用效率最高且持续提升,京三角次之,中部地区、东北地区和西南地区的能源利用效率再次提升。与产业结构相对落后的省份相比,产业结构较好的省份在能效方面优势不明显,而技术创新水平较高的省份通常能效相对较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Relationship Between Green Finance, Sustainable Technological Innovation and Energy Efficiency
Sustainable technological innovation can promote this progress in finance. This optimization and upgrading of energy efficiency can provide a good energy environment for green development. The collaborative innovation of financial enterprises has brought such development to the tertiary industry, driving the upgrading of consumer demand, and thus promoting the development of green finance. At this same time, sustainable technological innovation will increase investment in environmental protection, reduce energy consumption, promote the reduction of carbon emissions in the financial industry, and accelerate the development of green finance. This paper uses the data envelopment analysis method to calculate the Marquis production efficiency index, examines the dynamic generation efficiency of intertemporal energy input and output, and calculates the energy efficiency of green finance. This article measures and deconstructs energy efficiency at the provincial level, and pays attention to its changes. The study depicted the efficiency distribution of 28 provinces in two stages of the survey period. By using random kernel estimation for two periods during the survey period, dynamic distribution three-dimensional maps and density contour maps of total factor energy productivity, energy utilization efficiency, and energy allocation efficiency growth rates were drawn for the two periods. The results show that the transfer probability group of energy efficiency and its decomposition terms mainly falls near the diagonal, indicating that TFP and its decomposition term growth rate have certain transferability. From 2005 to 2015, the energy utilization efficiency of the seven economic regions has been significantly improved, and the energy efficiency differences in different regions have gradually converged. The energy efficiency of the Yangtze River Delta and the Pearl River Delta is the highest and has been continuously improved, followed by the Beijing Delta, the central region, the northeast region and the southwest region are again in terms of energy efficiency. Compared with provinces with relatively poor industrial structures, provinces with better industrial structures do not have significant advantages in energy efficiency, while provinces with higher levels of technological innovation typically have relatively higher energy efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Strategic Planning for Energy and the Environment
Strategic Planning for Energy and the Environment Environmental Science-Environmental Science (all)
CiteScore
1.50
自引率
0.00%
发文量
25
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信