{"title":"绿色金融、可持续技术创新与能效之间的关系","authors":"Miaomiao Zhu","doi":"10.13052/spee1048-5236.43212","DOIUrl":null,"url":null,"abstract":"Sustainable technological innovation can promote this progress in finance. This optimization and upgrading of energy efficiency can provide a good energy environment for green development. The collaborative innovation of financial enterprises has brought such development to the tertiary industry, driving the upgrading of consumer demand, and thus promoting the development of green finance. At this same time, sustainable technological innovation will increase investment in environmental protection, reduce energy consumption, promote the reduction of carbon emissions in the financial industry, and accelerate the development of green finance. This paper uses the data envelopment analysis method to calculate the Marquis production efficiency index, examines the dynamic generation efficiency of intertemporal energy input and output, and calculates the energy efficiency of green finance. This article measures and deconstructs energy efficiency at the provincial level, and pays attention to its changes. The study depicted the efficiency distribution of 28 provinces in two stages of the survey period. By using random kernel estimation for two periods during the survey period, dynamic distribution three-dimensional maps and density contour maps of total factor energy productivity, energy utilization efficiency, and energy allocation efficiency growth rates were drawn for the two periods. The results show that the transfer probability group of energy efficiency and its decomposition terms mainly falls near the diagonal, indicating that TFP and its decomposition term growth rate have certain transferability. From 2005 to 2015, the energy utilization efficiency of the seven economic regions has been significantly improved, and the energy efficiency differences in different regions have gradually converged. The energy efficiency of the Yangtze River Delta and the Pearl River Delta is the highest and has been continuously improved, followed by the Beijing Delta, the central region, the northeast region and the southwest region are again in terms of energy efficiency. Compared with provinces with relatively poor industrial structures, provinces with better industrial structures do not have significant advantages in energy efficiency, while provinces with higher levels of technological innovation typically have relatively higher energy efficiency.","PeriodicalId":35712,"journal":{"name":"Strategic Planning for Energy and the Environment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Relationship Between Green Finance, Sustainable Technological Innovation and Energy Efficiency\",\"authors\":\"Miaomiao Zhu\",\"doi\":\"10.13052/spee1048-5236.43212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sustainable technological innovation can promote this progress in finance. This optimization and upgrading of energy efficiency can provide a good energy environment for green development. The collaborative innovation of financial enterprises has brought such development to the tertiary industry, driving the upgrading of consumer demand, and thus promoting the development of green finance. At this same time, sustainable technological innovation will increase investment in environmental protection, reduce energy consumption, promote the reduction of carbon emissions in the financial industry, and accelerate the development of green finance. This paper uses the data envelopment analysis method to calculate the Marquis production efficiency index, examines the dynamic generation efficiency of intertemporal energy input and output, and calculates the energy efficiency of green finance. This article measures and deconstructs energy efficiency at the provincial level, and pays attention to its changes. The study depicted the efficiency distribution of 28 provinces in two stages of the survey period. By using random kernel estimation for two periods during the survey period, dynamic distribution three-dimensional maps and density contour maps of total factor energy productivity, energy utilization efficiency, and energy allocation efficiency growth rates were drawn for the two periods. The results show that the transfer probability group of energy efficiency and its decomposition terms mainly falls near the diagonal, indicating that TFP and its decomposition term growth rate have certain transferability. From 2005 to 2015, the energy utilization efficiency of the seven economic regions has been significantly improved, and the energy efficiency differences in different regions have gradually converged. The energy efficiency of the Yangtze River Delta and the Pearl River Delta is the highest and has been continuously improved, followed by the Beijing Delta, the central region, the northeast region and the southwest region are again in terms of energy efficiency. Compared with provinces with relatively poor industrial structures, provinces with better industrial structures do not have significant advantages in energy efficiency, while provinces with higher levels of technological innovation typically have relatively higher energy efficiency.\",\"PeriodicalId\":35712,\"journal\":{\"name\":\"Strategic Planning for Energy and the Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strategic Planning for Energy and the Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/spee1048-5236.43212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strategic Planning for Energy and the Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/spee1048-5236.43212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
The Relationship Between Green Finance, Sustainable Technological Innovation and Energy Efficiency
Sustainable technological innovation can promote this progress in finance. This optimization and upgrading of energy efficiency can provide a good energy environment for green development. The collaborative innovation of financial enterprises has brought such development to the tertiary industry, driving the upgrading of consumer demand, and thus promoting the development of green finance. At this same time, sustainable technological innovation will increase investment in environmental protection, reduce energy consumption, promote the reduction of carbon emissions in the financial industry, and accelerate the development of green finance. This paper uses the data envelopment analysis method to calculate the Marquis production efficiency index, examines the dynamic generation efficiency of intertemporal energy input and output, and calculates the energy efficiency of green finance. This article measures and deconstructs energy efficiency at the provincial level, and pays attention to its changes. The study depicted the efficiency distribution of 28 provinces in two stages of the survey period. By using random kernel estimation for two periods during the survey period, dynamic distribution three-dimensional maps and density contour maps of total factor energy productivity, energy utilization efficiency, and energy allocation efficiency growth rates were drawn for the two periods. The results show that the transfer probability group of energy efficiency and its decomposition terms mainly falls near the diagonal, indicating that TFP and its decomposition term growth rate have certain transferability. From 2005 to 2015, the energy utilization efficiency of the seven economic regions has been significantly improved, and the energy efficiency differences in different regions have gradually converged. The energy efficiency of the Yangtze River Delta and the Pearl River Delta is the highest and has been continuously improved, followed by the Beijing Delta, the central region, the northeast region and the southwest region are again in terms of energy efficiency. Compared with provinces with relatively poor industrial structures, provinces with better industrial structures do not have significant advantages in energy efficiency, while provinces with higher levels of technological innovation typically have relatively higher energy efficiency.