基于 ICT-GRU 预测模型的多形式能源密集型园区综合能源系统的低碳经济调度

Q3 Environmental Science
LiaoYi Ning, Kai Liang, Bo Zhang, Yang Gao, Zhilin Xu
{"title":"基于 ICT-GRU 预测模型的多形式能源密集型园区综合能源系统的低碳经济调度","authors":"LiaoYi Ning, Kai Liang, Bo Zhang, Yang Gao, Zhilin Xu","doi":"10.13052/spee1048-5236.4323","DOIUrl":null,"url":null,"abstract":"This paper presents a solution to the issues of redundancy and ambiguity in predicting variables associated with renewable energy output while aligning with the objectives of the “dual-carbon” energy strategy. A low-carbon economic dispatch method for multi-form energy-intensive parks is proposed, employing the ICT-GRU prediction model. Leveraging historical generation data, the ICT-GRU model enables accurate forecasting of renewable energy output. Subsequently, a comprehensive energy system model is developed considering the carbon emission characteristics and control features of park entities. The model aims to minimize operational costs and facilitate low-carbon economic dispatch. The effectiveness of the proposed method is demonstrated through a case study conducted in a multi-form energy-intensive load park integrated into a power grid. The results validate its capability to achieve low-carbon economic operation and provide valuable insights for grid dispatch optimization.","PeriodicalId":35712,"journal":{"name":"Strategic Planning for Energy and the Environment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Carbon Economic Dispatch of Integrated Energy Systems in Multi-Form Energy-intensive Parks Based on the ICT-GRU Prediction Model\",\"authors\":\"LiaoYi Ning, Kai Liang, Bo Zhang, Yang Gao, Zhilin Xu\",\"doi\":\"10.13052/spee1048-5236.4323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a solution to the issues of redundancy and ambiguity in predicting variables associated with renewable energy output while aligning with the objectives of the “dual-carbon” energy strategy. A low-carbon economic dispatch method for multi-form energy-intensive parks is proposed, employing the ICT-GRU prediction model. Leveraging historical generation data, the ICT-GRU model enables accurate forecasting of renewable energy output. Subsequently, a comprehensive energy system model is developed considering the carbon emission characteristics and control features of park entities. The model aims to minimize operational costs and facilitate low-carbon economic dispatch. The effectiveness of the proposed method is demonstrated through a case study conducted in a multi-form energy-intensive load park integrated into a power grid. The results validate its capability to achieve low-carbon economic operation and provide valuable insights for grid dispatch optimization.\",\"PeriodicalId\":35712,\"journal\":{\"name\":\"Strategic Planning for Energy and the Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strategic Planning for Energy and the Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/spee1048-5236.4323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strategic Planning for Energy and the Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/spee1048-5236.4323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种解决方案,既能解决可再生能源产出相关变量预测中的冗余和模糊问题,又能与 "双碳 "能源战略的目标保持一致。本文采用 ICT-GRU 预测模型,为多形式能源密集型园区提出了一种低碳经济调度方法。利用历史发电数据,ICT-GRU 模型能够准确预测可再生能源的产出。随后,考虑到碳排放特征和园区实体的控制特点,建立了一个综合能源系统模型。该模型旨在最大限度地降低运营成本,促进低碳经济调度。通过对一个并入电网的多形式能源密集型负荷园区进行案例研究,证明了所提方法的有效性。结果验证了该方法实现低碳经济运行的能力,并为电网调度优化提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Carbon Economic Dispatch of Integrated Energy Systems in Multi-Form Energy-intensive Parks Based on the ICT-GRU Prediction Model
This paper presents a solution to the issues of redundancy and ambiguity in predicting variables associated with renewable energy output while aligning with the objectives of the “dual-carbon” energy strategy. A low-carbon economic dispatch method for multi-form energy-intensive parks is proposed, employing the ICT-GRU prediction model. Leveraging historical generation data, the ICT-GRU model enables accurate forecasting of renewable energy output. Subsequently, a comprehensive energy system model is developed considering the carbon emission characteristics and control features of park entities. The model aims to minimize operational costs and facilitate low-carbon economic dispatch. The effectiveness of the proposed method is demonstrated through a case study conducted in a multi-form energy-intensive load park integrated into a power grid. The results validate its capability to achieve low-carbon economic operation and provide valuable insights for grid dispatch optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Strategic Planning for Energy and the Environment
Strategic Planning for Energy and the Environment Environmental Science-Environmental Science (all)
CiteScore
1.50
自引率
0.00%
发文量
25
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信