基于事件触发控制的自适应增益调度设计,实现主动磁轴承的稳健性能

IF 1.4 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS
P. Saini, B. Pratap, Punit Kumar
{"title":"基于事件触发控制的自适应增益调度设计,实现主动磁轴承的稳健性能","authors":"P. Saini, B. Pratap, Punit Kumar","doi":"10.1177/09596518231210978","DOIUrl":null,"url":null,"abstract":"This article proposes an efficient adaptive robust control for the eight-pole active magnetic bearing based on a heteropolar structure. Due to the uncertain behavior of active magnetic bearing, the mathematical model of active magnetic bearing is considered to be highly nonlinear and uncertain. As the rotor displacement and velocity are the measurable states, sliding mode control is designed to estimate state variables. Also, a matched disturbance term is used to deal with undesirable disturbances in the active magnetic bearing system. The controller is developed for an active magnetic bearing using the event-triggering-based sliding mode control technique. However, the stability of the proposed scheme has been achieved with the help of Lyapunov theory. Furthermore, the adaptive gain scheduling approach based on a neural network has been augmented to adjust the gain of the proposed controller for active magnetic bearing adaptively. The simulation studies have been performed in detail to demonstrate the use of proposed scheme for the robust control of active magnetic bearings. Finally, a comparative analysis of the proposed control design scheme with a conventional controller has been performed to achieve improved performance satisfying the plant constraints.","PeriodicalId":20638,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive gain scheduling based event-triggering control design for robust performance of active magnetic bearing\",\"authors\":\"P. Saini, B. Pratap, Punit Kumar\",\"doi\":\"10.1177/09596518231210978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes an efficient adaptive robust control for the eight-pole active magnetic bearing based on a heteropolar structure. Due to the uncertain behavior of active magnetic bearing, the mathematical model of active magnetic bearing is considered to be highly nonlinear and uncertain. As the rotor displacement and velocity are the measurable states, sliding mode control is designed to estimate state variables. Also, a matched disturbance term is used to deal with undesirable disturbances in the active magnetic bearing system. The controller is developed for an active magnetic bearing using the event-triggering-based sliding mode control technique. However, the stability of the proposed scheme has been achieved with the help of Lyapunov theory. Furthermore, the adaptive gain scheduling approach based on a neural network has been augmented to adjust the gain of the proposed controller for active magnetic bearing adaptively. The simulation studies have been performed in detail to demonstrate the use of proposed scheme for the robust control of active magnetic bearings. Finally, a comparative analysis of the proposed control design scheme with a conventional controller has been performed to achieve improved performance satisfying the plant constraints.\",\"PeriodicalId\":20638,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/09596518231210978\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/09596518231210978","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于异极结构的八极主动磁轴承高效自适应鲁棒控制。由于主动磁悬浮轴承行为的不确定性,主动磁悬浮轴承的数学模型被认为是高度非线性和不确定的。由于转子位移和速度是可测量的状态,因此设计了滑模控制来估计状态变量。此外,还使用了匹配干扰项来处理主动磁悬浮轴承系统中的不良干扰。利用基于事件触发的滑模控制技术,为主动磁轴承开发了控制器。然而,所提方案的稳定性是在 Lyapunov 理论的帮助下实现的。此外,还增加了基于神经网络的自适应增益调度方法,以自适应地调整主动磁轴承拟议控制器的增益。详细的仿真研究证明了所提方案在主动磁轴承鲁棒控制中的应用。最后,对所提出的控制设计方案与传统控制器进行了对比分析,以提高性能,满足工厂的约束条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive gain scheduling based event-triggering control design for robust performance of active magnetic bearing
This article proposes an efficient adaptive robust control for the eight-pole active magnetic bearing based on a heteropolar structure. Due to the uncertain behavior of active magnetic bearing, the mathematical model of active magnetic bearing is considered to be highly nonlinear and uncertain. As the rotor displacement and velocity are the measurable states, sliding mode control is designed to estimate state variables. Also, a matched disturbance term is used to deal with undesirable disturbances in the active magnetic bearing system. The controller is developed for an active magnetic bearing using the event-triggering-based sliding mode control technique. However, the stability of the proposed scheme has been achieved with the help of Lyapunov theory. Furthermore, the adaptive gain scheduling approach based on a neural network has been augmented to adjust the gain of the proposed controller for active magnetic bearing adaptively. The simulation studies have been performed in detail to demonstrate the use of proposed scheme for the robust control of active magnetic bearings. Finally, a comparative analysis of the proposed control design scheme with a conventional controller has been performed to achieve improved performance satisfying the plant constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
18.80%
发文量
99
审稿时长
4.2 months
期刊介绍: Systems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering refleSystems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering reflects this diversity by giving prominence to experimental application and industrial studies. "It is clear from the feedback we receive that the Journal is now recognised as one of the leaders in its field. We are particularly interested in highlighting experimental applications and industrial studies, but also new theoretical developments which are likely to provide the foundation for future applications. In 2009, we launched a new Series of "Forward Look" papers written by leading researchers and practitioners. These short articles are intended to be provocative and help to set the agenda for future developments. We continue to strive for fast decision times and minimum delays in the production processes." Professor Cliff Burrows - University of Bath, UK This journal is a member of the Committee on Publication Ethics (COPE).cts this diversity by giving prominence to experimental application and industrial studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信