管理生菜(Lactuca sativa var. longifolia)底部腐烂病的前景看好的生态友好型纳米粒子

Nashwa A. H. Fetyan, T. Essa, Tamer M. Salem, Ahmed Aboueloyoun Taha, S. F. Elgobashy, N. Tharwat, Tamer Elsakhawy
{"title":"管理生菜(Lactuca sativa var. longifolia)底部腐烂病的前景看好的生态友好型纳米粒子","authors":"Nashwa A. H. Fetyan, T. Essa, Tamer M. Salem, Ahmed Aboueloyoun Taha, S. F. Elgobashy, N. Tharwat, Tamer Elsakhawy","doi":"10.3390/microbiolres15010014","DOIUrl":null,"url":null,"abstract":"Developing innovative, eco-friendly fungicide alternatives is crucial to mitigate the substantial threat fungal pathogens pose to crop yields. In this study, we assessed the in vitro effectiveness of SiO2, CuO, and γFe2O3 nanoparticles against Rhizoctonia solani. Furthermore, greenhouse experiments were conducted in artificially infested soil to evaluate the in vivo impact of nanoparticles under study. Two application methods were employed: soil drenching with 10 mL per pot at concentrations of 50, 100, and 200 mg L−1, and seedling dipping in nanoparticle suspensions at each concentration combined with soil drench. The combined treatment of 200 mg L−1 γFe2O3 or CuO nanoparticles showed the highest in vitro antifungal activity. Conversely, SiO2 nanoparticles demonstrated the lowest in vitro activity. Notably, the application of 200 mg/L SiO2 via the dipping and soil drenching methods decreased counts of silicate-solubilizing bacteria and Azospirillum spp. Whereas, application of 100 mg L−1 γFe2O3 nanoparticles via soil drenching increased soil bacterial counts, and CuO nanoparticles at 50 mg L−1 through dipping and soil drenching had the highest dehydrogenase value. γFe2O3 nanoparticles improved plant photosynthetic pigments, reduced malondialdehyde levels, and minimized membrane leakage in lettuce plants. A root anatomical study showed that 200 mg L−1 CuO nanoparticles induced toxicity, whereas 200 mg L−1 γFe2O3 or SiO2 nanoparticles positively affected root diameter, tissue structure, and various anatomical measurements in lettuce roots. γFe2O3 nanoparticles hold promise as a sustainable alternative for managing crop diseases.","PeriodicalId":506564,"journal":{"name":"Microbiology Research","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Promising Eco-Friendly Nanoparticles for Managing Bottom Rot Disease in Lettuce (Lactuca sativa var. longifolia)\",\"authors\":\"Nashwa A. H. Fetyan, T. Essa, Tamer M. Salem, Ahmed Aboueloyoun Taha, S. F. Elgobashy, N. Tharwat, Tamer Elsakhawy\",\"doi\":\"10.3390/microbiolres15010014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing innovative, eco-friendly fungicide alternatives is crucial to mitigate the substantial threat fungal pathogens pose to crop yields. In this study, we assessed the in vitro effectiveness of SiO2, CuO, and γFe2O3 nanoparticles against Rhizoctonia solani. Furthermore, greenhouse experiments were conducted in artificially infested soil to evaluate the in vivo impact of nanoparticles under study. Two application methods were employed: soil drenching with 10 mL per pot at concentrations of 50, 100, and 200 mg L−1, and seedling dipping in nanoparticle suspensions at each concentration combined with soil drench. The combined treatment of 200 mg L−1 γFe2O3 or CuO nanoparticles showed the highest in vitro antifungal activity. Conversely, SiO2 nanoparticles demonstrated the lowest in vitro activity. Notably, the application of 200 mg/L SiO2 via the dipping and soil drenching methods decreased counts of silicate-solubilizing bacteria and Azospirillum spp. Whereas, application of 100 mg L−1 γFe2O3 nanoparticles via soil drenching increased soil bacterial counts, and CuO nanoparticles at 50 mg L−1 through dipping and soil drenching had the highest dehydrogenase value. γFe2O3 nanoparticles improved plant photosynthetic pigments, reduced malondialdehyde levels, and minimized membrane leakage in lettuce plants. A root anatomical study showed that 200 mg L−1 CuO nanoparticles induced toxicity, whereas 200 mg L−1 γFe2O3 or SiO2 nanoparticles positively affected root diameter, tissue structure, and various anatomical measurements in lettuce roots. γFe2O3 nanoparticles hold promise as a sustainable alternative for managing crop diseases.\",\"PeriodicalId\":506564,\"journal\":{\"name\":\"Microbiology Research\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/microbiolres15010014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/microbiolres15010014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

要减轻真菌病原体对作物产量造成的巨大威胁,开发创新型环保杀菌剂替代品至关重要。在这项研究中,我们评估了 SiO2、CuO 和 γFe2O3 纳米粒子对根瘤菌的体外药效。此外,我们还在人工侵染的土壤中进行了温室实验,以评估所研究的纳米粒子的体内影响。实验采用了两种施用方法:每盆 10 mL、浓度分别为 50、100 和 200 mg L-1 的土壤淋洗法,以及将幼苗浸泡在各浓度的纳米颗粒悬浮液中并结合土壤淋洗法。200 mg L-1 γFe2O3 或 CuO 纳米粒子的综合处理显示出最高的体外抗真菌活性。相反,SiO2 纳米粒子的体外抗真菌活性最低。值得注意的是,通过浸渍法和土壤淋洗法施用 200 mg/L SiO2 会减少硅酸盐溶解菌和氮青霉属的数量,而通过土壤淋洗法施用 100 mg L-1 γFe2O3 纳米粒子会增加土壤细菌数量,通过浸渍法和土壤淋洗法施用 50 mg L-1 的 CuO 纳米粒子具有最高的脱氢酶值。γ-Fe2O3纳米粒子能改善植物光合色素,降低丙二醛水平,减少莴苣植物的膜渗漏。根部解剖研究表明,200 mg L-1 CuO 纳米粒子会诱发毒性,而 200 mg L-1 γFe2O3 或 SiO2 纳米粒子则会对莴苣根的直径、组织结构和各种解剖测量产生积极影响。γFe2O3纳米粒子有望成为管理作物病害的一种可持续替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Promising Eco-Friendly Nanoparticles for Managing Bottom Rot Disease in Lettuce (Lactuca sativa var. longifolia)
Developing innovative, eco-friendly fungicide alternatives is crucial to mitigate the substantial threat fungal pathogens pose to crop yields. In this study, we assessed the in vitro effectiveness of SiO2, CuO, and γFe2O3 nanoparticles against Rhizoctonia solani. Furthermore, greenhouse experiments were conducted in artificially infested soil to evaluate the in vivo impact of nanoparticles under study. Two application methods were employed: soil drenching with 10 mL per pot at concentrations of 50, 100, and 200 mg L−1, and seedling dipping in nanoparticle suspensions at each concentration combined with soil drench. The combined treatment of 200 mg L−1 γFe2O3 or CuO nanoparticles showed the highest in vitro antifungal activity. Conversely, SiO2 nanoparticles demonstrated the lowest in vitro activity. Notably, the application of 200 mg/L SiO2 via the dipping and soil drenching methods decreased counts of silicate-solubilizing bacteria and Azospirillum spp. Whereas, application of 100 mg L−1 γFe2O3 nanoparticles via soil drenching increased soil bacterial counts, and CuO nanoparticles at 50 mg L−1 through dipping and soil drenching had the highest dehydrogenase value. γFe2O3 nanoparticles improved plant photosynthetic pigments, reduced malondialdehyde levels, and minimized membrane leakage in lettuce plants. A root anatomical study showed that 200 mg L−1 CuO nanoparticles induced toxicity, whereas 200 mg L−1 γFe2O3 or SiO2 nanoparticles positively affected root diameter, tissue structure, and various anatomical measurements in lettuce roots. γFe2O3 nanoparticles hold promise as a sustainable alternative for managing crop diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信