Long Zhao, Zhicheng Liu, Peng Yuan, Guanru Wen, Xinbo Huang
{"title":"输电塔振动特征提取和故障检测方法","authors":"Long Zhao, Zhicheng Liu, Peng Yuan, Guanru Wen, Xinbo Huang","doi":"10.1049/smt2.12179","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a novel bolt looseness detection method for power transmission towers based on vibration signal analysis. The proposed method utilizes pulse excitation to extract the vibration signal of the tower, which is then adaptively decomposed using the Variational Mode Decomposition of Spider Wasp optimizer (SWVMD). This overcomes limitations of traditional Variational Mode Decomposition methods by leveraging bio-inspired optimization to improve signal decomposition. Simulated signals processed with different optimization methods verify the superiority of the SWO approach. Field tests on a 110-kV transmission tower further demonstrate the effectiveness of the proposed SWVMD technique for analyzing on-site vibration data. A new improved intrinsic multiscale sample entropy feature is also introduced for bolt state characterization. A Spider Wasp Support Vector Machine classifier is developed to realize accurate bolt loosening monitoring using the extracted features. Dynamic response tests under varying bolt conditions show that the method can identify early loosening and reduce tower damage risks compared to conventional techniques. This novel vibration-based detection framework presents an innovative application of nature-inspired computing for power infrastructure health monitoring.</p>","PeriodicalId":54999,"journal":{"name":"Iet Science Measurement & Technology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.12179","citationCount":"0","resultStr":"{\"title\":\"Vibration feature extraction and fault detection method for transmission towers\",\"authors\":\"Long Zhao, Zhicheng Liu, Peng Yuan, Guanru Wen, Xinbo Huang\",\"doi\":\"10.1049/smt2.12179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a novel bolt looseness detection method for power transmission towers based on vibration signal analysis. The proposed method utilizes pulse excitation to extract the vibration signal of the tower, which is then adaptively decomposed using the Variational Mode Decomposition of Spider Wasp optimizer (SWVMD). This overcomes limitations of traditional Variational Mode Decomposition methods by leveraging bio-inspired optimization to improve signal decomposition. Simulated signals processed with different optimization methods verify the superiority of the SWO approach. Field tests on a 110-kV transmission tower further demonstrate the effectiveness of the proposed SWVMD technique for analyzing on-site vibration data. A new improved intrinsic multiscale sample entropy feature is also introduced for bolt state characterization. A Spider Wasp Support Vector Machine classifier is developed to realize accurate bolt loosening monitoring using the extracted features. Dynamic response tests under varying bolt conditions show that the method can identify early loosening and reduce tower damage risks compared to conventional techniques. This novel vibration-based detection framework presents an innovative application of nature-inspired computing for power infrastructure health monitoring.</p>\",\"PeriodicalId\":54999,\"journal\":{\"name\":\"Iet Science Measurement & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.12179\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Science Measurement & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/smt2.12179\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Science Measurement & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/smt2.12179","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Vibration feature extraction and fault detection method for transmission towers
This paper presents a novel bolt looseness detection method for power transmission towers based on vibration signal analysis. The proposed method utilizes pulse excitation to extract the vibration signal of the tower, which is then adaptively decomposed using the Variational Mode Decomposition of Spider Wasp optimizer (SWVMD). This overcomes limitations of traditional Variational Mode Decomposition methods by leveraging bio-inspired optimization to improve signal decomposition. Simulated signals processed with different optimization methods verify the superiority of the SWO approach. Field tests on a 110-kV transmission tower further demonstrate the effectiveness of the proposed SWVMD technique for analyzing on-site vibration data. A new improved intrinsic multiscale sample entropy feature is also introduced for bolt state characterization. A Spider Wasp Support Vector Machine classifier is developed to realize accurate bolt loosening monitoring using the extracted features. Dynamic response tests under varying bolt conditions show that the method can identify early loosening and reduce tower damage risks compared to conventional techniques. This novel vibration-based detection framework presents an innovative application of nature-inspired computing for power infrastructure health monitoring.
期刊介绍:
IET Science, Measurement & Technology publishes papers in science, engineering and technology underpinning electronic and electrical engineering, nanotechnology and medical instrumentation.The emphasis of the journal is on theory, simulation methodologies and measurement techniques.
The major themes of the journal are:
- electromagnetism including electromagnetic theory, computational electromagnetics and EMC
- properties and applications of dielectric, magnetic, magneto-optic, piezoelectric materials down to the nanometre scale
- measurement and instrumentation including sensors, actuators, medical instrumentation, fundamentals of measurement including measurement standards, uncertainty, dissemination and calibration
Applications are welcome for illustrative purposes but the novelty and originality should focus on the proposed new methods.