Shuang Wang, Heming Jia, A. Hussien, L. Abualigah, Guanjun Lin, Hongwei Wei, Zhenheng Lin, K. G. Dhal
{"title":"用海洋捕食者算法提升 Aquila 优化器的组合优化能力","authors":"Shuang Wang, Heming Jia, A. Hussien, L. Abualigah, Guanjun Lin, Hongwei Wei, Zhenheng Lin, K. G. Dhal","doi":"10.1093/jcde/qwae004","DOIUrl":null,"url":null,"abstract":"\n In this study, an improved version of Aquila Optimizer (AO) known as EHAOMPA has been developed by using the Marine Predators Algorithm (MPA). MPA is a recent and well-behaved optimizer with a unique memory saving and FADs mechanism. At the same time, it suffers from various defects such as inadequate global search, sluggish convergence, and stagnation of local optima. However, AO has contented robust global exploration capability, fast convergence speed, and high search efficiency. Thus, the proposed EHAOMPA aims to complement the shortcomings of AO and MPA while bringing new features. Specifically, the representative-based hunting technique is incorporated into the exploration stage to enhance population diversity. At the same time, random opposition-based learning (ROBL) is introduced into the exploitation stage to prevent the optimizer from sticking to local optima. This study tests the performance of EHAOMPA's on twenty-three standard mathematical benchmark functions, 29 complex test functions from the CEC2017 test suite, six constrained industrial engineering design problems, and a CNN-hyperparameter optimization for COVID-19 CT-image detection problem. EHAOMPA is compared with four existing optimization algorithm types, achieving the best performance on both numerical and practical issues. Compared to other methods, the test function results demonstrate that EHAOMPA exhibits a more potent global search capability, a higher convergence rate, increased accuracy, and an improved ability to avoid local optima. The excellent experimental results in practical problems indicate that the developed EHAOMPA has great potential in solving real-world optimization problems. The combination of multiple strategies can effectively improve the performance of the algorithm. The source code of the EHAOMPA is publicly available at https://github.com/WangShuang92/EHAOMPA.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting Aquila Optimizer by Marine Predators Algorithm for Combinatorial Optimization\",\"authors\":\"Shuang Wang, Heming Jia, A. Hussien, L. Abualigah, Guanjun Lin, Hongwei Wei, Zhenheng Lin, K. G. Dhal\",\"doi\":\"10.1093/jcde/qwae004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this study, an improved version of Aquila Optimizer (AO) known as EHAOMPA has been developed by using the Marine Predators Algorithm (MPA). MPA is a recent and well-behaved optimizer with a unique memory saving and FADs mechanism. At the same time, it suffers from various defects such as inadequate global search, sluggish convergence, and stagnation of local optima. However, AO has contented robust global exploration capability, fast convergence speed, and high search efficiency. Thus, the proposed EHAOMPA aims to complement the shortcomings of AO and MPA while bringing new features. Specifically, the representative-based hunting technique is incorporated into the exploration stage to enhance population diversity. At the same time, random opposition-based learning (ROBL) is introduced into the exploitation stage to prevent the optimizer from sticking to local optima. This study tests the performance of EHAOMPA's on twenty-three standard mathematical benchmark functions, 29 complex test functions from the CEC2017 test suite, six constrained industrial engineering design problems, and a CNN-hyperparameter optimization for COVID-19 CT-image detection problem. EHAOMPA is compared with four existing optimization algorithm types, achieving the best performance on both numerical and practical issues. Compared to other methods, the test function results demonstrate that EHAOMPA exhibits a more potent global search capability, a higher convergence rate, increased accuracy, and an improved ability to avoid local optima. The excellent experimental results in practical problems indicate that the developed EHAOMPA has great potential in solving real-world optimization problems. The combination of multiple strategies can effectively improve the performance of the algorithm. The source code of the EHAOMPA is publicly available at https://github.com/WangShuang92/EHAOMPA.\",\"PeriodicalId\":48611,\"journal\":{\"name\":\"Journal of Computational Design and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Design and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jcde/qwae004\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Design and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jcde/qwae004","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Boosting Aquila Optimizer by Marine Predators Algorithm for Combinatorial Optimization
In this study, an improved version of Aquila Optimizer (AO) known as EHAOMPA has been developed by using the Marine Predators Algorithm (MPA). MPA is a recent and well-behaved optimizer with a unique memory saving and FADs mechanism. At the same time, it suffers from various defects such as inadequate global search, sluggish convergence, and stagnation of local optima. However, AO has contented robust global exploration capability, fast convergence speed, and high search efficiency. Thus, the proposed EHAOMPA aims to complement the shortcomings of AO and MPA while bringing new features. Specifically, the representative-based hunting technique is incorporated into the exploration stage to enhance population diversity. At the same time, random opposition-based learning (ROBL) is introduced into the exploitation stage to prevent the optimizer from sticking to local optima. This study tests the performance of EHAOMPA's on twenty-three standard mathematical benchmark functions, 29 complex test functions from the CEC2017 test suite, six constrained industrial engineering design problems, and a CNN-hyperparameter optimization for COVID-19 CT-image detection problem. EHAOMPA is compared with four existing optimization algorithm types, achieving the best performance on both numerical and practical issues. Compared to other methods, the test function results demonstrate that EHAOMPA exhibits a more potent global search capability, a higher convergence rate, increased accuracy, and an improved ability to avoid local optima. The excellent experimental results in practical problems indicate that the developed EHAOMPA has great potential in solving real-world optimization problems. The combination of multiple strategies can effectively improve the performance of the algorithm. The source code of the EHAOMPA is publicly available at https://github.com/WangShuang92/EHAOMPA.
期刊介绍:
Journal of Computational Design and Engineering is an international journal that aims to provide academia and industry with a venue for rapid publication of research papers reporting innovative computational methods and applications to achieve a major breakthrough, practical improvements, and bold new research directions within a wide range of design and engineering:
• Theory and its progress in computational advancement for design and engineering
• Development of computational framework to support large scale design and engineering
• Interaction issues among human, designed artifacts, and systems
• Knowledge-intensive technologies for intelligent and sustainable systems
• Emerging technology and convergence of technology fields presented with convincing design examples
• Educational issues for academia, practitioners, and future generation
• Proposal on new research directions as well as survey and retrospectives on mature field.