Jaturavit Pantakitcharoenkul, Matthew Y. Coblyn, Goran N. Jovanovic
{"title":"用于肾脏置换的体外血液治疗设备:现有技术回顾与微尺度设备的未来发展方向","authors":"Jaturavit Pantakitcharoenkul, Matthew Y. Coblyn, Goran N. Jovanovic","doi":"10.15255/cabeq.2022.2129","DOIUrl":null,"url":null,"abstract":"Extracorporeal blood therapeutic devices (ETDs) are medical devices capable of performing treatments outside of the body through an extracorporeal circuit. These devices are widely used in both clinical/hospital settings and at-home care. A prototypical example is the treatment of nephrological diseases through hemodialysis and continuous renal replacement therapy using a hemodialyzer or an artificial kidney. The various applications of ETDs share common limitations such as coagulation, hemolysis, air embolism, and sensitivity reactions, all of which arise from the interactions of human physiology with the treatment mechanisms. Researchers are implementing microscale-based technology to achieve the next-generation ETD that can address persistent problems and improve therapeutic performance. This review article focuses on the evolution of the structure and development of conventional ETDs towards the miniaturization of the device. We begin with a narrow but common definition of ETDs as well as their current form and uses for renal replacement followed by a review of the importance and progression of microscale-based ETD development together with future directions towards achieving fully functional micro-scale-based ETDs that reflects contemporary technological and engineering advancements.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracorporeal Blood Therapeutic Devices for Renal Replacement: A Review of Current Technologies and Future Directions Toward Microscale-based Devices\",\"authors\":\"Jaturavit Pantakitcharoenkul, Matthew Y. Coblyn, Goran N. Jovanovic\",\"doi\":\"10.15255/cabeq.2022.2129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracorporeal blood therapeutic devices (ETDs) are medical devices capable of performing treatments outside of the body through an extracorporeal circuit. These devices are widely used in both clinical/hospital settings and at-home care. A prototypical example is the treatment of nephrological diseases through hemodialysis and continuous renal replacement therapy using a hemodialyzer or an artificial kidney. The various applications of ETDs share common limitations such as coagulation, hemolysis, air embolism, and sensitivity reactions, all of which arise from the interactions of human physiology with the treatment mechanisms. Researchers are implementing microscale-based technology to achieve the next-generation ETD that can address persistent problems and improve therapeutic performance. This review article focuses on the evolution of the structure and development of conventional ETDs towards the miniaturization of the device. We begin with a narrow but common definition of ETDs as well as their current form and uses for renal replacement followed by a review of the importance and progression of microscale-based ETD development together with future directions towards achieving fully functional micro-scale-based ETDs that reflects contemporary technological and engineering advancements.\",\"PeriodicalId\":9765,\"journal\":{\"name\":\"Chemical and Biochemical Engineering Quarterly\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biochemical Engineering Quarterly\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.15255/cabeq.2022.2129\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biochemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15255/cabeq.2022.2129","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Extracorporeal Blood Therapeutic Devices for Renal Replacement: A Review of Current Technologies and Future Directions Toward Microscale-based Devices
Extracorporeal blood therapeutic devices (ETDs) are medical devices capable of performing treatments outside of the body through an extracorporeal circuit. These devices are widely used in both clinical/hospital settings and at-home care. A prototypical example is the treatment of nephrological diseases through hemodialysis and continuous renal replacement therapy using a hemodialyzer or an artificial kidney. The various applications of ETDs share common limitations such as coagulation, hemolysis, air embolism, and sensitivity reactions, all of which arise from the interactions of human physiology with the treatment mechanisms. Researchers are implementing microscale-based technology to achieve the next-generation ETD that can address persistent problems and improve therapeutic performance. This review article focuses on the evolution of the structure and development of conventional ETDs towards the miniaturization of the device. We begin with a narrow but common definition of ETDs as well as their current form and uses for renal replacement followed by a review of the importance and progression of microscale-based ETD development together with future directions towards achieving fully functional micro-scale-based ETDs that reflects contemporary technological and engineering advancements.
期刊介绍:
The journal provides an international forum for presentation of original papers, reviews and discussions on the latest developments in chemical and biochemical engineering. The scope of the journal is wide and no limitation except relevance to chemical and biochemical engineering is required.
The criteria for the acceptance of papers are originality, quality of work and clarity of style. All papers are subject to reviewing by at least two international experts (blind peer review).
The language of the journal is English. Final versions of the manuscripts are subject to metric (SI units and IUPAC recommendations) and English language reviewing.
Editor and Editorial board make the final decision about acceptance of a manuscript.
Page charges are excluded.