B. Bukit, F. Syamani, E. Rochima, C. Panatarani, W. Widiyastuti, Danar Praseptiangga, Novizar Nazir, Yeyen Nurhamiyah, Siti Agustina
{"title":"用于 3D 打印材料的藻酸盐基复合材料综述","authors":"B. Bukit, F. Syamani, E. Rochima, C. Panatarani, W. Widiyastuti, Danar Praseptiangga, Novizar Nazir, Yeyen Nurhamiyah, Siti Agustina","doi":"10.1177/20412479241227137","DOIUrl":null,"url":null,"abstract":"The ability of alginates to form hydrogel solutions makes them a promising biomaterial for three-dimensional (3D) printing. Researchers are investigating several techniques to improve the alginate hydrogels’ quality, such as using alginate-based nanocomposites as materials for 3D printing. This review examines the material of alginate-based composites, the printing technique, and the applications of 3D printing alginate-based composites. Material composites for 3D printing include alginate with clay, a combination of alginate with polymers or biopolymers, and a mixture of alginate with metal oxide and carbon. The 3D printing material from alginate combined with polymers is usually used in the medical and green packaging industries, whereas a mixture of alginate with clay, metal oxide, and carbon 3D printing material is utilized in the environmental field. When considering printing procedures, extrusion techniques are the most affordable. Furthermore, the purpose of alginate composite characterization is to determine the impact generated by the material combinations. This characterization is carried out based on the intended application. However, it is common to employ mechanical, thermal, rheological, scanning electron, XRD, and FTIR analysis to identify the fundamental characteristics of the alginate composite according to research.","PeriodicalId":20353,"journal":{"name":"Polymers from Renewable Resources","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of alginate-based composites for 3D printing material\",\"authors\":\"B. Bukit, F. Syamani, E. Rochima, C. Panatarani, W. Widiyastuti, Danar Praseptiangga, Novizar Nazir, Yeyen Nurhamiyah, Siti Agustina\",\"doi\":\"10.1177/20412479241227137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability of alginates to form hydrogel solutions makes them a promising biomaterial for three-dimensional (3D) printing. Researchers are investigating several techniques to improve the alginate hydrogels’ quality, such as using alginate-based nanocomposites as materials for 3D printing. This review examines the material of alginate-based composites, the printing technique, and the applications of 3D printing alginate-based composites. Material composites for 3D printing include alginate with clay, a combination of alginate with polymers or biopolymers, and a mixture of alginate with metal oxide and carbon. The 3D printing material from alginate combined with polymers is usually used in the medical and green packaging industries, whereas a mixture of alginate with clay, metal oxide, and carbon 3D printing material is utilized in the environmental field. When considering printing procedures, extrusion techniques are the most affordable. Furthermore, the purpose of alginate composite characterization is to determine the impact generated by the material combinations. This characterization is carried out based on the intended application. However, it is common to employ mechanical, thermal, rheological, scanning electron, XRD, and FTIR analysis to identify the fundamental characteristics of the alginate composite according to research.\",\"PeriodicalId\":20353,\"journal\":{\"name\":\"Polymers from Renewable Resources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers from Renewable Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/20412479241227137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers from Renewable Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20412479241227137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
摘要
藻酸盐能够形成水凝胶溶液,因此是一种很有前景的三维(3D)打印生物材料。研究人员正在研究几种提高藻酸盐水凝胶质量的技术,例如使用藻酸盐基纳米复合材料作为三维打印的材料。本综述探讨了藻酸盐基复合材料的材料、打印技术以及 3D打印藻酸盐基复合材料的应用。用于 3D 打印的复合材料包括藻酸盐与粘土、藻酸盐与聚合物或生物聚合物的组合,以及藻酸盐与金属氧化物和碳的混合物。海藻酸盐与聚合物结合的 3D 打印材料通常用于医疗和绿色包装行业,而海藻酸盐与粘土、金属氧化物和碳的混合物 3D 打印材料则用于环保领域。在考虑打印程序时,挤压技术是最经济实惠的。此外,海藻酸盐复合材料表征的目的是确定材料组合产生的影响。这种表征是根据预期应用进行的。不过,根据研究,通常会采用机械、热、流变、扫描电子、XRD 和傅立叶变换红外分析来确定海藻酸盐复合材料的基本特性。
Review of alginate-based composites for 3D printing material
The ability of alginates to form hydrogel solutions makes them a promising biomaterial for three-dimensional (3D) printing. Researchers are investigating several techniques to improve the alginate hydrogels’ quality, such as using alginate-based nanocomposites as materials for 3D printing. This review examines the material of alginate-based composites, the printing technique, and the applications of 3D printing alginate-based composites. Material composites for 3D printing include alginate with clay, a combination of alginate with polymers or biopolymers, and a mixture of alginate with metal oxide and carbon. The 3D printing material from alginate combined with polymers is usually used in the medical and green packaging industries, whereas a mixture of alginate with clay, metal oxide, and carbon 3D printing material is utilized in the environmental field. When considering printing procedures, extrusion techniques are the most affordable. Furthermore, the purpose of alginate composite characterization is to determine the impact generated by the material combinations. This characterization is carried out based on the intended application. However, it is common to employ mechanical, thermal, rheological, scanning electron, XRD, and FTIR analysis to identify the fundamental characteristics of the alginate composite according to research.
期刊介绍:
Polymers from Renewable Resources, launched in 2010, publishes leading peer reviewed research that is focused on the development of renewable polymers and their application in the production of industrial, consumer, and medical products. The progressive decline of fossil resources, together with the ongoing increases in oil prices, has initiated an increase in the search for alternatives based on renewable resources for the production of energy. The prevalence of petroleum and carbon based chemistry for the production of organic chemical goods has generated a variety of initiatives aimed at replacing fossil sources with renewable counterparts. In particular, major efforts are being conducted in polymer science and technology to prepare macromolecular materials based on renewable resources. Also gaining momentum is the utilisation of vegetable biomass either by the separation of its components and their development or after suitable chemical modification. This journal is a valuable addition to academic, research and industrial libraries, research institutions dealing with the use of natural resources and materials science and industrial laboratories concerned with polymer science.