热弹性体的准静态模型,由热弹性薄包裹体加固

Irina V. Fankina, A. Furtsev, E. Rudoy, S. Sazhenkov
{"title":"热弹性体的准静态模型,由热弹性薄包裹体加固","authors":"Irina V. Fankina, A. Furtsev, E. Rudoy, S. Sazhenkov","doi":"10.1177/10812865231217043","DOIUrl":null,"url":null,"abstract":"The problem of description of quasi-static behavior is studied for a planar thermoelastic body incorporating an inhomogeneity, which geometrically is a strip with a small cross-section. This problem contains a small positive parameter [Formula: see text] describing the thickness of the inhomogeneity, i.e., the size of the cross-section. Relying on the variational formulation of the problem, we investigate the behavior of solutions as [Formula: see text] tends to zero. As the result, by the version of the method of formal asymptotic expansions, we derive a closed limit model in which the inhomogeneity is thin (of zero width). After this, using the Galerkin method and the classical techniques of derivation of energy estimates, we prove existence, uniqueness, and stability of a weak solution to this model.","PeriodicalId":502792,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"9 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A quasi-static model of a thermoelastic body reinforced by a thin thermoelastic inclusion\",\"authors\":\"Irina V. Fankina, A. Furtsev, E. Rudoy, S. Sazhenkov\",\"doi\":\"10.1177/10812865231217043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of description of quasi-static behavior is studied for a planar thermoelastic body incorporating an inhomogeneity, which geometrically is a strip with a small cross-section. This problem contains a small positive parameter [Formula: see text] describing the thickness of the inhomogeneity, i.e., the size of the cross-section. Relying on the variational formulation of the problem, we investigate the behavior of solutions as [Formula: see text] tends to zero. As the result, by the version of the method of formal asymptotic expansions, we derive a closed limit model in which the inhomogeneity is thin (of zero width). After this, using the Galerkin method and the classical techniques of derivation of energy estimates, we prove existence, uniqueness, and stability of a weak solution to this model.\",\"PeriodicalId\":502792,\"journal\":{\"name\":\"Mathematics and Mechanics of Solids\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Mechanics of Solids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/10812865231217043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/10812865231217043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个包含不均匀性的平面热弹性体的准静态行为描述问题,不均匀性在几何上是一个具有小横截面的条带。该问题包含一个小的正参数[公式:见正文],用于描述不均匀体的厚度,即横截面的大小。根据问题的变分公式,我们研究了当[公式:见正文]趋近于零时的解的行为。结果,通过形式渐近展开法,我们推导出了一个封闭的极限模型,在这个模型中,不均匀性很薄(宽度为零)。之后,利用伽勒金方法和能量估计的经典推导技术,我们证明了该模型弱解的存在性、唯一性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A quasi-static model of a thermoelastic body reinforced by a thin thermoelastic inclusion
The problem of description of quasi-static behavior is studied for a planar thermoelastic body incorporating an inhomogeneity, which geometrically is a strip with a small cross-section. This problem contains a small positive parameter [Formula: see text] describing the thickness of the inhomogeneity, i.e., the size of the cross-section. Relying on the variational formulation of the problem, we investigate the behavior of solutions as [Formula: see text] tends to zero. As the result, by the version of the method of formal asymptotic expansions, we derive a closed limit model in which the inhomogeneity is thin (of zero width). After this, using the Galerkin method and the classical techniques of derivation of energy estimates, we prove existence, uniqueness, and stability of a weak solution to this model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信