Sibel Özcan, Aurelio Jesus Gallardo Caparros, B. Biel
{"title":"二维过渡金属二卤化物中的点状空位","authors":"Sibel Özcan, Aurelio Jesus Gallardo Caparros, B. Biel","doi":"10.1088/2516-1075/ad2090","DOIUrl":null,"url":null,"abstract":"\n This study explores the realm of two-dimensional Transition Metal Dichalcogenides (TMDs), examining some of the most prevalent defects. Employing Density Functional Theory (DFT), we scrutinize three common defect types across four extensively studied TMDs: MoS2, MoSe2, WS2, and WSe2. Our investigation spans the energetics of these defects, unveiling the most stable ones, and unraveling the alterations in structural and electronic properties induced by their presence. As a further step towards practical applications, we simulate the images that would be captured by both Atomic and Kelvin Probe Force Microscopes, aiming at a facile identification of these defects when probed at the microscopic level.","PeriodicalId":502740,"journal":{"name":"Electronic Structure","volume":"5 33","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Point-like vacancies in Two-Dimensional Transition Metal Dichalcogenides\",\"authors\":\"Sibel Özcan, Aurelio Jesus Gallardo Caparros, B. Biel\",\"doi\":\"10.1088/2516-1075/ad2090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study explores the realm of two-dimensional Transition Metal Dichalcogenides (TMDs), examining some of the most prevalent defects. Employing Density Functional Theory (DFT), we scrutinize three common defect types across four extensively studied TMDs: MoS2, MoSe2, WS2, and WSe2. Our investigation spans the energetics of these defects, unveiling the most stable ones, and unraveling the alterations in structural and electronic properties induced by their presence. As a further step towards practical applications, we simulate the images that would be captured by both Atomic and Kelvin Probe Force Microscopes, aiming at a facile identification of these defects when probed at the microscopic level.\",\"PeriodicalId\":502740,\"journal\":{\"name\":\"Electronic Structure\",\"volume\":\"5 33\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Structure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1075/ad2090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1075/ad2090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Point-like vacancies in Two-Dimensional Transition Metal Dichalcogenides
This study explores the realm of two-dimensional Transition Metal Dichalcogenides (TMDs), examining some of the most prevalent defects. Employing Density Functional Theory (DFT), we scrutinize three common defect types across four extensively studied TMDs: MoS2, MoSe2, WS2, and WSe2. Our investigation spans the energetics of these defects, unveiling the most stable ones, and unraveling the alterations in structural and electronic properties induced by their presence. As a further step towards practical applications, we simulate the images that would be captured by both Atomic and Kelvin Probe Force Microscopes, aiming at a facile identification of these defects when probed at the microscopic level.