论多维均质欧拉方程炸裂和梯度灾难的层次和精细结构

B. Konopelchenko, G. Ortenzi
{"title":"论多维均质欧拉方程炸裂和梯度灾难的层次和精细结构","authors":"B. Konopelchenko, G. Ortenzi","doi":"10.1088/1751-8121/ad20b7","DOIUrl":null,"url":null,"abstract":"\n Blowups of derivatives and gradient catastrophes for the n-dimensional homogeneous Euler equation are discussed. It is shown that, in the case of generic initial data, the blowups exhibit a fine structure in accordance of the admissible ranks of certain matrix generated by the initial data. Blowups form a hierarchy composed by n + 1 levels with the singularity of derivatives given by ∂ui/∂xk ∼ |δx|-(m+1)/(m+2), m = 1, . . . , n along certain critical directions. It is demonstrated that in the multi-dimensional case there are certain bounded linear superposition of blowup derivatives. Particular results for the potential motion are presented too. Hodograph equations are basic tools of the analysis.","PeriodicalId":502730,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"7 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the hierarchy and fine structure of blowups and gradient catastrophes for multidimensional homogeneous Euler equation\",\"authors\":\"B. Konopelchenko, G. Ortenzi\",\"doi\":\"10.1088/1751-8121/ad20b7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Blowups of derivatives and gradient catastrophes for the n-dimensional homogeneous Euler equation are discussed. It is shown that, in the case of generic initial data, the blowups exhibit a fine structure in accordance of the admissible ranks of certain matrix generated by the initial data. Blowups form a hierarchy composed by n + 1 levels with the singularity of derivatives given by ∂ui/∂xk ∼ |δx|-(m+1)/(m+2), m = 1, . . . , n along certain critical directions. It is demonstrated that in the multi-dimensional case there are certain bounded linear superposition of blowup derivatives. Particular results for the potential motion are presented too. Hodograph equations are basic tools of the analysis.\",\"PeriodicalId\":502730,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"7 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad20b7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad20b7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了 n 维均相欧拉方程的导数炸裂和梯度灾难。结果表明,在一般初始数据的情况下,炸裂会根据初始数据生成的某些矩阵的可容许级数表现出一种单一结构。炸裂形成一个由 n + 1 级组成的层次结构,其导数的奇异性由 ∂ui/∂xk ∼ |δx|-(m+1)/(m+2), m = 1, . . ., n 沿某些临界方向。实验证明,在多维情况下,炸裂导数存在一定的有界线性叠加。此外,还给出了势运动的特定结果。霍多格方程是分析的基本工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the hierarchy and fine structure of blowups and gradient catastrophes for multidimensional homogeneous Euler equation
Blowups of derivatives and gradient catastrophes for the n-dimensional homogeneous Euler equation are discussed. It is shown that, in the case of generic initial data, the blowups exhibit a fine structure in accordance of the admissible ranks of certain matrix generated by the initial data. Blowups form a hierarchy composed by n + 1 levels with the singularity of derivatives given by ∂ui/∂xk ∼ |δx|-(m+1)/(m+2), m = 1, . . . , n along certain critical directions. It is demonstrated that in the multi-dimensional case there are certain bounded linear superposition of blowup derivatives. Particular results for the potential motion are presented too. Hodograph equations are basic tools of the analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信