{"title":"东莨菪碱通过乳化修饰RUNX2蛋白调节人牙周韧带干细胞的成骨分化","authors":"Ying Wu, Pan Gong","doi":"10.1002/prp2.1169","DOIUrl":null,"url":null,"abstract":"<p><p>Periodontal ligament stem cells (PDLSCs) are important mesenchymal stem cells contributing to regenerating lost periodontal tissues and repairing bone defects. Studies on the molecular mechanism affecting the osteogenic differentiation of PDLSCs are necessary. Scopolamine (SCO) is known as a regulator of neural cell damage. The focus of the current study is on unveiling the role of SCO-mediated molecular mechanism in the osteogenic differentiation of PDLSCs. Through CCK-8 assay and LDH detection, we confirmed that SCO enhanced the viability of PDLSCs. Moreover, we determined that SCO induced the PDLSCs osteogenic differentiation, according to data of ALP activity measurement and ARS staining. Mechanistically, we performed western blot and identified that SCO could promote the lactylation of runt-related transcription factor 2 (RUNX2). We also found through rescue assays that knockdown of RUNX2 could reverse the effect of SCO treatment on the osteogenic differentiation of PDLSCs. Further mechanism investigation revealed that lactylation of RUNX2 at K176 site enhances the protein stability of RUNX2 through deubiquitination. Collectively, our present study unveils that SCO stabilizes RUNX2 to promote the osteogenic differentiation of PDLSCs through the lactylation modification of RUNX2.</p>","PeriodicalId":19948,"journal":{"name":"Pharmacology Research & Perspectives","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10804664/pdf/","citationCount":"0","resultStr":"{\"title\":\"Scopolamine regulates the osteogenic differentiation of human periodontal ligament stem cells through lactylation modification of RUNX2 protein.\",\"authors\":\"Ying Wu, Pan Gong\",\"doi\":\"10.1002/prp2.1169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Periodontal ligament stem cells (PDLSCs) are important mesenchymal stem cells contributing to regenerating lost periodontal tissues and repairing bone defects. Studies on the molecular mechanism affecting the osteogenic differentiation of PDLSCs are necessary. Scopolamine (SCO) is known as a regulator of neural cell damage. The focus of the current study is on unveiling the role of SCO-mediated molecular mechanism in the osteogenic differentiation of PDLSCs. Through CCK-8 assay and LDH detection, we confirmed that SCO enhanced the viability of PDLSCs. Moreover, we determined that SCO induced the PDLSCs osteogenic differentiation, according to data of ALP activity measurement and ARS staining. Mechanistically, we performed western blot and identified that SCO could promote the lactylation of runt-related transcription factor 2 (RUNX2). We also found through rescue assays that knockdown of RUNX2 could reverse the effect of SCO treatment on the osteogenic differentiation of PDLSCs. Further mechanism investigation revealed that lactylation of RUNX2 at K176 site enhances the protein stability of RUNX2 through deubiquitination. Collectively, our present study unveils that SCO stabilizes RUNX2 to promote the osteogenic differentiation of PDLSCs through the lactylation modification of RUNX2.</p>\",\"PeriodicalId\":19948,\"journal\":{\"name\":\"Pharmacology Research & Perspectives\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10804664/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacology Research & Perspectives\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/prp2.1169\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology Research & Perspectives","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/prp2.1169","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Scopolamine regulates the osteogenic differentiation of human periodontal ligament stem cells through lactylation modification of RUNX2 protein.
Periodontal ligament stem cells (PDLSCs) are important mesenchymal stem cells contributing to regenerating lost periodontal tissues and repairing bone defects. Studies on the molecular mechanism affecting the osteogenic differentiation of PDLSCs are necessary. Scopolamine (SCO) is known as a regulator of neural cell damage. The focus of the current study is on unveiling the role of SCO-mediated molecular mechanism in the osteogenic differentiation of PDLSCs. Through CCK-8 assay and LDH detection, we confirmed that SCO enhanced the viability of PDLSCs. Moreover, we determined that SCO induced the PDLSCs osteogenic differentiation, according to data of ALP activity measurement and ARS staining. Mechanistically, we performed western blot and identified that SCO could promote the lactylation of runt-related transcription factor 2 (RUNX2). We also found through rescue assays that knockdown of RUNX2 could reverse the effect of SCO treatment on the osteogenic differentiation of PDLSCs. Further mechanism investigation revealed that lactylation of RUNX2 at K176 site enhances the protein stability of RUNX2 through deubiquitination. Collectively, our present study unveils that SCO stabilizes RUNX2 to promote the osteogenic differentiation of PDLSCs through the lactylation modification of RUNX2.
期刊介绍:
PR&P is jointly published by the American Society for Pharmacology and Experimental Therapeutics (ASPET), the British Pharmacological Society (BPS), and Wiley. PR&P is a bi-monthly open access journal that publishes a range of article types, including: target validation (preclinical papers that show a hypothesis is incorrect or papers on drugs that have failed in early clinical development); drug discovery reviews (strategy, hypotheses, and data resulting in a successful therapeutic drug); frontiers in translational medicine (drug and target validation for an unmet therapeutic need); pharmacological hypotheses (reviews that are oriented to inform a novel hypothesis); and replication studies (work that refutes key findings [failed replication] and work that validates key findings). PR&P publishes papers submitted directly to the journal and those referred from the journals of ASPET and the BPS