有界域上反应扩散方程全局解存在的必要条件和充分条件

IF 1.7 4区 数学 Q1 Mathematics
Soon-Yeong Chung, Jaeho Hwang
{"title":"有界域上反应扩散方程全局解存在的必要条件和充分条件","authors":"Soon-Yeong Chung, Jaeho Hwang","doi":"10.1186/s13661-024-01822-w","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to give a necessary and sufficient condition for the existence and non-existence of global solutions of the following semilinear parabolic equations $$ u_{t}=\\Delta u+\\psi (t)f(u),\\quad \\text{in }\\Omega \\times (0,\\infty ), $$ under the mixed boundary condition on a bounded domain Ω. In fact, this has remained an open problem for a few decades, even for the case $f(u)=u^{p}$ . As a matter of fact, we prove: $$ \\begin{aligned} & \\text{there is no global solution for any initial data if and only if } \\\\ & \\int _{0}^{\\infty}\\psi (t) \\frac{f (\\lVert S(t)u_{0}\\rVert _{\\infty} )}{\\lVert S(t)u_{0}\\rVert _{\\infty}}\\,dt= \\infty \\\\ &\\text{for every nonnegative nontrivial initial data } u_{0}\\in C_{0}( \\Omega ). \\end{aligned} $$ Here, $(S(t))_{t\\geq 0}$ is the heat semigroup with the mixed boundary condition.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":"4 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A necessary and sufficient condition for the existence of global solutions to reaction-diffusion equations on bounded domains\",\"authors\":\"Soon-Yeong Chung, Jaeho Hwang\",\"doi\":\"10.1186/s13661-024-01822-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to give a necessary and sufficient condition for the existence and non-existence of global solutions of the following semilinear parabolic equations $$ u_{t}=\\\\Delta u+\\\\psi (t)f(u),\\\\quad \\\\text{in }\\\\Omega \\\\times (0,\\\\infty ), $$ under the mixed boundary condition on a bounded domain Ω. In fact, this has remained an open problem for a few decades, even for the case $f(u)=u^{p}$ . As a matter of fact, we prove: $$ \\\\begin{aligned} & \\\\text{there is no global solution for any initial data if and only if } \\\\\\\\ & \\\\int _{0}^{\\\\infty}\\\\psi (t) \\\\frac{f (\\\\lVert S(t)u_{0}\\\\rVert _{\\\\infty} )}{\\\\lVert S(t)u_{0}\\\\rVert _{\\\\infty}}\\\\,dt= \\\\infty \\\\\\\\ &\\\\text{for every nonnegative nontrivial initial data } u_{0}\\\\in C_{0}( \\\\Omega ). \\\\end{aligned} $$ Here, $(S(t))_{t\\\\geq 0}$ is the heat semigroup with the mixed boundary condition.\",\"PeriodicalId\":49228,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-024-01822-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01822-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在给出以下半线性抛物方程的全局解 $$ u_{t}=\Delta u+\psi (t)f(u),\quad \text{in }\Omega \times (0,\infty ), $$ 在有界域 Ω 上的混合边界条件下存在与不存在的必要条件和充分条件。事实上,几十年来这一直是个悬而未决的问题,即使对于 $f(u)=u^{p}$ 的情况也是如此。事实上,我们证明了: $$ (begin{aligned} & \text{there is no global solution for any initial data if and only if }\ & \int _{0}^{\infty}\psi (t) \frac{f (\lVert S(t)u_{0}\rVert _\{infty} )}{\lVert S(t)u_{0}\rVert _\{infty}}\、dt= \infty \ &text{ for every nonnegative nontrivial initial data } u_{0}\in C_{0}( \Omega ).\end{aligned} $$ 这里,$(S(t))_{t\geq 0}$ 是具有混合边界条件的热半群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A necessary and sufficient condition for the existence of global solutions to reaction-diffusion equations on bounded domains
The purpose of this paper is to give a necessary and sufficient condition for the existence and non-existence of global solutions of the following semilinear parabolic equations $$ u_{t}=\Delta u+\psi (t)f(u),\quad \text{in }\Omega \times (0,\infty ), $$ under the mixed boundary condition on a bounded domain Ω. In fact, this has remained an open problem for a few decades, even for the case $f(u)=u^{p}$ . As a matter of fact, we prove: $$ \begin{aligned} & \text{there is no global solution for any initial data if and only if } \\ & \int _{0}^{\infty}\psi (t) \frac{f (\lVert S(t)u_{0}\rVert _{\infty} )}{\lVert S(t)u_{0}\rVert _{\infty}}\,dt= \infty \\ &\text{for every nonnegative nontrivial initial data } u_{0}\in C_{0}( \Omega ). \end{aligned} $$ Here, $(S(t))_{t\geq 0}$ is the heat semigroup with the mixed boundary condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Boundary Value Problems
Boundary Value Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.00
自引率
5.90%
发文量
83
审稿时长
4 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信