利用局部谐振频率重构波导形状变化的层剥方法

IF 1.9 4区 数学 Q1 MATHEMATICS, APPLIED
Angéle Niclas, Laurent Seppecher
{"title":"利用局部谐振频率重构波导形状变化的层剥方法","authors":"Angéle Niclas, Laurent Seppecher","doi":"10.1137/23m1546336","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Mathematics, Volume 84, Issue 1, Page 75-96, February 2024. <br/> Abstract. This article presents a new method to reconstruct slowly varying width defects in two-dimensional waveguides using one-side section measurements at locally resonant frequencies. At these frequencies, locally resonant modes propagate in the waveguide up to a “cut-off” position. In this particular point, the local width of the waveguide can be recovered. Given multifrequency data measured on a section of the waveguide, we perform an efficient layer stripping approach to recover, section by section, the shape variations. It provides an L infinity-stable method to reconstruct the width of a slowly monotonous varying waveguide. We validate this method on numerical data and discuss its limits.","PeriodicalId":51149,"journal":{"name":"SIAM Journal on Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layer Stripping Approach to Reconstruct Shape Variations in Waveguides Using Locally Resonant Frequencies\",\"authors\":\"Angéle Niclas, Laurent Seppecher\",\"doi\":\"10.1137/23m1546336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Mathematics, Volume 84, Issue 1, Page 75-96, February 2024. <br/> Abstract. This article presents a new method to reconstruct slowly varying width defects in two-dimensional waveguides using one-side section measurements at locally resonant frequencies. At these frequencies, locally resonant modes propagate in the waveguide up to a “cut-off” position. In this particular point, the local width of the waveguide can be recovered. Given multifrequency data measured on a section of the waveguide, we perform an efficient layer stripping approach to recover, section by section, the shape variations. It provides an L infinity-stable method to reconstruct the width of a slowly monotonous varying waveguide. We validate this method on numerical data and discuss its limits.\",\"PeriodicalId\":51149,\"journal\":{\"name\":\"SIAM Journal on Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1546336\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1546336","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 应用数学杂志》第 84 卷第 1 期第 75-96 页,2024 年 2 月。 摘要本文介绍了一种在局部谐振频率下利用单侧截面测量重建二维波导中缓慢变化的宽度缺陷的新方法。在这些频率下,局部谐振模式在波导中传播到一个 "截止 "位置。在这个特定位置,可以恢复波导的局部宽度。根据在一段波导上测量到的多频数据,我们采用一种高效的层剥离方法,逐段恢复波导的形状变化。它提供了一种 L 无限稳定的方法来重建缓慢单调变化的波导宽度。我们在数值数据上验证了这种方法,并讨论了它的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Layer Stripping Approach to Reconstruct Shape Variations in Waveguides Using Locally Resonant Frequencies
SIAM Journal on Applied Mathematics, Volume 84, Issue 1, Page 75-96, February 2024.
Abstract. This article presents a new method to reconstruct slowly varying width defects in two-dimensional waveguides using one-side section measurements at locally resonant frequencies. At these frequencies, locally resonant modes propagate in the waveguide up to a “cut-off” position. In this particular point, the local width of the waveguide can be recovered. Given multifrequency data measured on a section of the waveguide, we perform an efficient layer stripping approach to recover, section by section, the shape variations. It provides an L infinity-stable method to reconstruct the width of a slowly monotonous varying waveguide. We validate this method on numerical data and discuss its limits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
79
审稿时长
12 months
期刊介绍: SIAM Journal on Applied Mathematics (SIAP) is an interdisciplinary journal containing research articles that treat scientific problems using methods that are of mathematical interest. Appropriate subject areas include the physical, engineering, financial, and life sciences. Examples are problems in fluid mechanics, including reaction-diffusion problems, sedimentation, combustion, and transport theory; solid mechanics; elasticity; electromagnetic theory and optics; materials science; mathematical biology, including population dynamics, biomechanics, and physiology; linear and nonlinear wave propagation, including scattering theory and wave propagation in random media; inverse problems; nonlinear dynamics; and stochastic processes, including queueing theory. Mathematical techniques of interest include asymptotic methods, bifurcation theory, dynamical systems theory, complex network theory, computational methods, and probabilistic and statistical methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信