论带两个参数的分数(p,q)-拉普拉斯算子的广义特征值问题

IF 1.3 3区 数学 Q1 MATHEMATICS
Nirjan Biswas, Firoj Sk
{"title":"论带两个参数的分数(p,q)-拉普拉斯算子的广义特征值问题","authors":"Nirjan Biswas, Firoj Sk","doi":"10.1017/prm.2023.134","DOIUrl":null,"url":null,"abstract":"<p>For <span><span><span data-mathjax-type=\"texmath\"><span>$s_1,\\,s_2\\in (0,\\,1)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline2.png\"/></span></span> and <span><span><span data-mathjax-type=\"texmath\"><span>$p,\\,q \\in (1,\\, \\infty )$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline3.png\"/></span></span>, we study the following nonlinear Dirichlet eigenvalue problem with parameters <span><span><span data-mathjax-type=\"texmath\"><span>$\\alpha,\\, \\beta \\in \\mathbb {R}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline4.png\"/></span></span> driven by the sum of two nonlocal operators:<span><span data-mathjax-type=\"texmath\"><span>\\[ (-\\Delta)^{s_1}_p u+(-\\Delta)^{s_2}_q u=\\alpha|u|^{p-2}u+\\beta|u|^{q-2}u\\ \\text{in }\\Omega, \\quad u=0\\ \\text{in } \\mathbb{R}^d \\setminus \\Omega, \\quad \\mathrm{(P)} \\]</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_eqnU1.png\"/></span>where <span><span><span data-mathjax-type=\"texmath\"><span>$\\Omega \\subset \\mathbb {R}^d$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline5.png\"/></span></span> is a bounded open set. Depending on the values of <span><span><span data-mathjax-type=\"texmath\"><span>$\\alpha,\\,\\beta$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline6.png\"/></span></span>, we completely describe the existence and non-existence of positive solutions to (P). We construct a continuous threshold curve in the two-dimensional <span><span><span data-mathjax-type=\"texmath\"><span>$(\\alpha,\\, \\beta )$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline7.png\"/></span></span>-plane, which separates the regions of the existence and non-existence of positive solutions. In addition, we prove that the first Dirichlet eigenfunctions of the fractional <span><span><span data-mathjax-type=\"texmath\"><span>$p$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline8.png\"/></span></span>-Laplace and fractional <span><span><span data-mathjax-type=\"texmath\"><span>$q$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline9.png\"/></span></span>-Laplace operators are linearly independent, which plays an essential role in the formation of the curve. Furthermore, we establish that every nonnegative solution of (P) is globally bounded.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"57 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On generalized eigenvalue problems of fractional (p, q)-Laplace operator with two parameters\",\"authors\":\"Nirjan Biswas, Firoj Sk\",\"doi\":\"10.1017/prm.2023.134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$s_1,\\\\,s_2\\\\in (0,\\\\,1)$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline2.png\\\"/></span></span> and <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$p,\\\\,q \\\\in (1,\\\\, \\\\infty )$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline3.png\\\"/></span></span>, we study the following nonlinear Dirichlet eigenvalue problem with parameters <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\alpha,\\\\, \\\\beta \\\\in \\\\mathbb {R}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline4.png\\\"/></span></span> driven by the sum of two nonlocal operators:<span><span data-mathjax-type=\\\"texmath\\\"><span>\\\\[ (-\\\\Delta)^{s_1}_p u+(-\\\\Delta)^{s_2}_q u=\\\\alpha|u|^{p-2}u+\\\\beta|u|^{q-2}u\\\\ \\\\text{in }\\\\Omega, \\\\quad u=0\\\\ \\\\text{in } \\\\mathbb{R}^d \\\\setminus \\\\Omega, \\\\quad \\\\mathrm{(P)} \\\\]</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_eqnU1.png\\\"/></span>where <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Omega \\\\subset \\\\mathbb {R}^d$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline5.png\\\"/></span></span> is a bounded open set. Depending on the values of <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\alpha,\\\\,\\\\beta$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline6.png\\\"/></span></span>, we completely describe the existence and non-existence of positive solutions to (P). We construct a continuous threshold curve in the two-dimensional <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$(\\\\alpha,\\\\, \\\\beta )$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline7.png\\\"/></span></span>-plane, which separates the regions of the existence and non-existence of positive solutions. In addition, we prove that the first Dirichlet eigenfunctions of the fractional <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$p$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline8.png\\\"/></span></span>-Laplace and fractional <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$q$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline9.png\\\"/></span></span>-Laplace operators are linearly independent, which plays an essential role in the formation of the curve. Furthermore, we establish that every nonnegative solution of (P) is globally bounded.</p>\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2023.134\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2023.134","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于 $s_1,s_2\in (0,\,1)$ 和 $p,\,q \in (1,\, \infty )$,我们研究了以下由两个非局部算子之和驱动的参数为 $\alpha,\, \beta \in \mathbb {R}$ 的非线性迪里夏特特征值问题:\(-\Delta)^{s_1}_p u+(-\Delta)^{s_2}_q u=\alpha|u|^{p-2}u+\beta|u|^{q-2}u\text{in }\Omega, \quad u=0\\text{in }\mathbb{R}^d \setminus \Omega, \quad \mathrm{(P)} \]其中 $\Omega \子集 \mathbb {R}^d$ 是一个有界的开集。根据 $\alpha,\,\beta$ 的值,我们完整地描述了 (P) 正解的存在与不存在。我们在二维 $(\alpha,\,\beta )$ 平面上构造了一条连续的阈值曲线,它将正解的存在与不存在区域分开。此外,我们证明了分数 $p$-Laplace 和分数 $q$-Laplace 算子的第一个 Dirichlet 特征函数是线性独立的,这对曲线的形成起着至关重要的作用。此外,我们还确定了 (P) 的每个非负解都是全局有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On generalized eigenvalue problems of fractional (p, q)-Laplace operator with two parameters

For $s_1,\,s_2\in (0,\,1)$ and $p,\,q \in (1,\, \infty )$, we study the following nonlinear Dirichlet eigenvalue problem with parameters $\alpha,\, \beta \in \mathbb {R}$ driven by the sum of two nonlocal operators:\[ (-\Delta)^{s_1}_p u+(-\Delta)^{s_2}_q u=\alpha|u|^{p-2}u+\beta|u|^{q-2}u\ \text{in }\Omega, \quad u=0\ \text{in } \mathbb{R}^d \setminus \Omega, \quad \mathrm{(P)} \]where $\Omega \subset \mathbb {R}^d$ is a bounded open set. Depending on the values of $\alpha,\,\beta$, we completely describe the existence and non-existence of positive solutions to (P). We construct a continuous threshold curve in the two-dimensional $(\alpha,\, \beta )$-plane, which separates the regions of the existence and non-existence of positive solutions. In addition, we prove that the first Dirichlet eigenfunctions of the fractional $p$-Laplace and fractional $q$-Laplace operators are linearly independent, which plays an essential role in the formation of the curve. Furthermore, we establish that every nonnegative solution of (P) is globally bounded.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信