{"title":"离散等式理论","authors":"J. Rosický","doi":"10.1017/s096012952400001x","DOIUrl":null,"url":null,"abstract":"<p>On a locally <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119162700723-0670:S096012952400001X:S096012952400001X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda$</span></span></img></span></span>-presentable symmetric monoidal closed category <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119162700723-0670:S096012952400001X:S096012952400001X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {V}$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119162700723-0670:S096012952400001X:S096012952400001X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda$</span></span></img></span></span>-ary enriched equational theories correspond to enriched monads preserving <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119162700723-0670:S096012952400001X:S096012952400001X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda$</span></span></img></span></span>-filtered colimits. We introduce discrete <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119162700723-0670:S096012952400001X:S096012952400001X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda$</span></span></img></span></span>-ary enriched equational theories where operations are induced by those having discrete arities (equations are not required to have discrete arities) and show that they correspond to enriched monads preserving preserving <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119162700723-0670:S096012952400001X:S096012952400001X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda$</span></span></img></span></span>-filtered colimits and surjections. Using it, we prove enriched Birkhof-type theorems for categories of algebras of discrete theories. This extends known results from metric spaces and posets to general symmetric monoidal closed categories.</p>","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"3 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete equational theories\",\"authors\":\"J. Rosický\",\"doi\":\"10.1017/s096012952400001x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>On a locally <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119162700723-0670:S096012952400001X:S096012952400001X_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\lambda$</span></span></img></span></span>-presentable symmetric monoidal closed category <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119162700723-0670:S096012952400001X:S096012952400001X_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {V}$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119162700723-0670:S096012952400001X:S096012952400001X_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\lambda$</span></span></img></span></span>-ary enriched equational theories correspond to enriched monads preserving <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119162700723-0670:S096012952400001X:S096012952400001X_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\lambda$</span></span></img></span></span>-filtered colimits. We introduce discrete <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119162700723-0670:S096012952400001X:S096012952400001X_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\lambda$</span></span></img></span></span>-ary enriched equational theories where operations are induced by those having discrete arities (equations are not required to have discrete arities) and show that they correspond to enriched monads preserving preserving <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119162700723-0670:S096012952400001X:S096012952400001X_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\lambda$</span></span></img></span></span>-filtered colimits and surjections. Using it, we prove enriched Birkhof-type theorems for categories of algebras of discrete theories. This extends known results from metric spaces and posets to general symmetric monoidal closed categories.</p>\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s096012952400001x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s096012952400001x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
On a locally $\lambda$-presentable symmetric monoidal closed category $\mathcal {V}$, $\lambda$-ary enriched equational theories correspond to enriched monads preserving $\lambda$-filtered colimits. We introduce discrete $\lambda$-ary enriched equational theories where operations are induced by those having discrete arities (equations are not required to have discrete arities) and show that they correspond to enriched monads preserving preserving $\lambda$-filtered colimits and surjections. Using it, we prove enriched Birkhof-type theorems for categories of algebras of discrete theories. This extends known results from metric spaces and posets to general symmetric monoidal closed categories.
期刊介绍:
Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.