离散等式理论

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
J. Rosický
{"title":"离散等式理论","authors":"J. Rosický","doi":"10.1017/s096012952400001x","DOIUrl":null,"url":null,"abstract":"<p>On a locally <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119162700723-0670:S096012952400001X:S096012952400001X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda$</span></span></img></span></span>-presentable symmetric monoidal closed category <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119162700723-0670:S096012952400001X:S096012952400001X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {V}$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119162700723-0670:S096012952400001X:S096012952400001X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda$</span></span></img></span></span>-ary enriched equational theories correspond to enriched monads preserving <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119162700723-0670:S096012952400001X:S096012952400001X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda$</span></span></img></span></span>-filtered colimits. We introduce discrete <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119162700723-0670:S096012952400001X:S096012952400001X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda$</span></span></img></span></span>-ary enriched equational theories where operations are induced by those having discrete arities (equations are not required to have discrete arities) and show that they correspond to enriched monads preserving preserving <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119162700723-0670:S096012952400001X:S096012952400001X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda$</span></span></img></span></span>-filtered colimits and surjections. Using it, we prove enriched Birkhof-type theorems for categories of algebras of discrete theories. This extends known results from metric spaces and posets to general symmetric monoidal closed categories.</p>","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"3 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete equational theories\",\"authors\":\"J. Rosický\",\"doi\":\"10.1017/s096012952400001x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>On a locally <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119162700723-0670:S096012952400001X:S096012952400001X_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\lambda$</span></span></img></span></span>-presentable symmetric monoidal closed category <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119162700723-0670:S096012952400001X:S096012952400001X_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {V}$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119162700723-0670:S096012952400001X:S096012952400001X_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\lambda$</span></span></img></span></span>-ary enriched equational theories correspond to enriched monads preserving <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119162700723-0670:S096012952400001X:S096012952400001X_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\lambda$</span></span></img></span></span>-filtered colimits. We introduce discrete <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119162700723-0670:S096012952400001X:S096012952400001X_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\lambda$</span></span></img></span></span>-ary enriched equational theories where operations are induced by those having discrete arities (equations are not required to have discrete arities) and show that they correspond to enriched monads preserving preserving <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119162700723-0670:S096012952400001X:S096012952400001X_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\lambda$</span></span></img></span></span>-filtered colimits and surjections. Using it, we prove enriched Birkhof-type theorems for categories of algebras of discrete theories. This extends known results from metric spaces and posets to general symmetric monoidal closed categories.</p>\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s096012952400001x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s096012952400001x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在一个局部$\lambda$可呈现的对称一元封闭范畴$\mathcal {V}$上,$\lambda$-ary丰富等式理论对应于保留$\lambda$过滤的列子的丰富单子。我们引入了离散的$\lambda$-ary丰富等式理论,其中运算是由那些具有离散算术数的运算诱导的(等式不要求具有离散算术数),并证明它们对应于保留$\lambda$-iltered colimits和投射的丰富单子。利用它,我们证明了离散理论代数范畴的丰富伯克霍夫型定理。这将已知的度量空间和集合的结果扩展到了一般对称一元封闭范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete equational theories

On a locally $\lambda$-presentable symmetric monoidal closed category $\mathcal {V}$, $\lambda$-ary enriched equational theories correspond to enriched monads preserving $\lambda$-filtered colimits. We introduce discrete $\lambda$-ary enriched equational theories where operations are induced by those having discrete arities (equations are not required to have discrete arities) and show that they correspond to enriched monads preserving preserving $\lambda$-filtered colimits and surjections. Using it, we prove enriched Birkhof-type theorems for categories of algebras of discrete theories. This extends known results from metric spaces and posets to general symmetric monoidal closed categories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Structures in Computer Science
Mathematical Structures in Computer Science 工程技术-计算机:理论方法
CiteScore
1.50
自引率
0.00%
发文量
30
审稿时长
12 months
期刊介绍: Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信