{"title":"关于具有质量作用或标准发生机制的退化反应-扩散流行病模型","authors":"Rachidi B. Salako, Yixiang Wu","doi":"10.1017/s0956792523000359","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider reaction-diffusion epidemic models with mass action or standard incidence mechanism and study the impact of limiting population movement on disease transmissions. We set either the dispersal rate of the susceptible or infected people to zero and study the corresponding degenerate reaction-diffusion model. Our main approach to study the global dynamics of these models is to construct delicate Lyapunov functions. Our results show that the consequences of limiting the movement of susceptible or infected people depend on transmission mechanisms, model parameters and population size.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On degenerate reaction-diffusion epidemic models with mass action or standard incidence mechanism\",\"authors\":\"Rachidi B. Salako, Yixiang Wu\",\"doi\":\"10.1017/s0956792523000359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider reaction-diffusion epidemic models with mass action or standard incidence mechanism and study the impact of limiting population movement on disease transmissions. We set either the dispersal rate of the susceptible or infected people to zero and study the corresponding degenerate reaction-diffusion model. Our main approach to study the global dynamics of these models is to construct delicate Lyapunov functions. Our results show that the consequences of limiting the movement of susceptible or infected people depend on transmission mechanisms, model parameters and population size.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0956792523000359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792523000359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
On degenerate reaction-diffusion epidemic models with mass action or standard incidence mechanism
In this paper, we consider reaction-diffusion epidemic models with mass action or standard incidence mechanism and study the impact of limiting population movement on disease transmissions. We set either the dispersal rate of the susceptible or infected people to zero and study the corresponding degenerate reaction-diffusion model. Our main approach to study the global dynamics of these models is to construct delicate Lyapunov functions. Our results show that the consequences of limiting the movement of susceptible or infected people depend on transmission mechanisms, model parameters and population size.