Huizhen Yan, Dandan Lin, Gaoke Gu, Yujie Huang, Xuya Hu, Zhenhao Yu, Dandi Hou, Demin Zhang, Barbara J. Campbell, Kai Wang
{"title":"复杂沿岸水域细菌组装机制的分类依赖性和空间异质性","authors":"Huizhen Yan, Dandan Lin, Gaoke Gu, Yujie Huang, Xuya Hu, Zhenhao Yu, Dandi Hou, Demin Zhang, Barbara J. Campbell, Kai Wang","doi":"10.1186/s13717-023-00480-7","DOIUrl":null,"url":null,"abstract":"Understanding community assembly mechanisms across taxa and space is fundamental for microbial ecology. However, the variability and determinants of assembly processes over taxa and space remain unclear. Here, we investigated taxonomic dependency and spatial heterogeneity in bacterial assembly mechanisms across coastal waters in the East China Sea using neutral and null models with customized visualization strategies. Overall, bacterial assembly mechanisms varied across broad taxonomic groups (phyla and proteobacterial classes) and space at the regional scale. A determinism–stochasticity balanced mechanism governed total bacterial assembly, while taxonomic dependency existed in assembly mechanisms and ecological processes. Among community ecological features, niche breadth and negative-to-positive cohesion ratio were strongly associated with the determinism-to-stochasticity ratio of bacterial groups. Bacterial assembly mechanisms commonly exhibited spatial heterogeneity, the extent and determinants of which varied across taxonomic groups. Spatial assembly of total bacteria was directly driven by many environmental factors and potential interactions between taxa, but not directly by geographic factors. Overall, the bacterial groups with higher spatial heterogeneity in assembly mechanisms were more related to environmental and/or geographic factors (except Bacteroidetes), while those with lower heterogeneity were more related to ecological features. Our results confirm the pervasiveness of taxonomic dependency and spatial heterogeneity in bacterial assembly, providing a finer understanding about regulation across complex coastal waters.","PeriodicalId":11419,"journal":{"name":"Ecological Processes","volume":"54 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taxonomic dependency and spatial heterogeneity in assembly mechanisms of bacteria across complex coastal waters\",\"authors\":\"Huizhen Yan, Dandan Lin, Gaoke Gu, Yujie Huang, Xuya Hu, Zhenhao Yu, Dandi Hou, Demin Zhang, Barbara J. Campbell, Kai Wang\",\"doi\":\"10.1186/s13717-023-00480-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding community assembly mechanisms across taxa and space is fundamental for microbial ecology. However, the variability and determinants of assembly processes over taxa and space remain unclear. Here, we investigated taxonomic dependency and spatial heterogeneity in bacterial assembly mechanisms across coastal waters in the East China Sea using neutral and null models with customized visualization strategies. Overall, bacterial assembly mechanisms varied across broad taxonomic groups (phyla and proteobacterial classes) and space at the regional scale. A determinism–stochasticity balanced mechanism governed total bacterial assembly, while taxonomic dependency existed in assembly mechanisms and ecological processes. Among community ecological features, niche breadth and negative-to-positive cohesion ratio were strongly associated with the determinism-to-stochasticity ratio of bacterial groups. Bacterial assembly mechanisms commonly exhibited spatial heterogeneity, the extent and determinants of which varied across taxonomic groups. Spatial assembly of total bacteria was directly driven by many environmental factors and potential interactions between taxa, but not directly by geographic factors. Overall, the bacterial groups with higher spatial heterogeneity in assembly mechanisms were more related to environmental and/or geographic factors (except Bacteroidetes), while those with lower heterogeneity were more related to ecological features. Our results confirm the pervasiveness of taxonomic dependency and spatial heterogeneity in bacterial assembly, providing a finer understanding about regulation across complex coastal waters.\",\"PeriodicalId\":11419,\"journal\":{\"name\":\"Ecological Processes\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Processes\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1186/s13717-023-00480-7\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Processes","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s13717-023-00480-7","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Taxonomic dependency and spatial heterogeneity in assembly mechanisms of bacteria across complex coastal waters
Understanding community assembly mechanisms across taxa and space is fundamental for microbial ecology. However, the variability and determinants of assembly processes over taxa and space remain unclear. Here, we investigated taxonomic dependency and spatial heterogeneity in bacterial assembly mechanisms across coastal waters in the East China Sea using neutral and null models with customized visualization strategies. Overall, bacterial assembly mechanisms varied across broad taxonomic groups (phyla and proteobacterial classes) and space at the regional scale. A determinism–stochasticity balanced mechanism governed total bacterial assembly, while taxonomic dependency existed in assembly mechanisms and ecological processes. Among community ecological features, niche breadth and negative-to-positive cohesion ratio were strongly associated with the determinism-to-stochasticity ratio of bacterial groups. Bacterial assembly mechanisms commonly exhibited spatial heterogeneity, the extent and determinants of which varied across taxonomic groups. Spatial assembly of total bacteria was directly driven by many environmental factors and potential interactions between taxa, but not directly by geographic factors. Overall, the bacterial groups with higher spatial heterogeneity in assembly mechanisms were more related to environmental and/or geographic factors (except Bacteroidetes), while those with lower heterogeneity were more related to ecological features. Our results confirm the pervasiveness of taxonomic dependency and spatial heterogeneity in bacterial assembly, providing a finer understanding about regulation across complex coastal waters.
期刊介绍:
Ecological Processes is an international, peer-reviewed, open access journal devoted to quality publications in ecological studies with a focus on the underlying processes responsible for the dynamics and functions of ecological systems at multiple spatial and temporal scales. The journal welcomes manuscripts on techniques, approaches, concepts, models, reviews, syntheses, short communications and applied research for advancing our knowledge and capability toward sustainability of ecosystems and the environment. Integrations of ecological and socio-economic processes are strongly encouraged.