应用于市场营销的新型响应模型和目标选择方法

Pub Date : 2024-01-18 DOI:10.1111/anzs.12406
Y. Cai
{"title":"应用于市场营销的新型响应模型和目标选择方法","authors":"Y. Cai","doi":"10.1111/anzs.12406","DOIUrl":null,"url":null,"abstract":"<p>Response models used in marketing are not always constructed for later marketing optimisation, which often results in unsatisfactory results in target selection for future marketing activities. To solve this problem, we develop a new binary response model and a new marketing target selection method. The proposed model can predict multiple propensity scores per customer through customer-specific propensity score distributions, which is not possible with existing response models, filling a gap in the literature. The target selection method can determine the best propensity scores from those predicted by the proposed model and use them to select customers for further marketing activities. Our simulation results and application to real marketing data confirm that the performance of the proposed model in target selection is significantly better than that of the existing models, including some popular machine learning methods, which indicate that our method can be very useful in practice.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12406","citationCount":"0","resultStr":"{\"title\":\"A novel response model and target selection method with applications to marketing\",\"authors\":\"Y. Cai\",\"doi\":\"10.1111/anzs.12406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Response models used in marketing are not always constructed for later marketing optimisation, which often results in unsatisfactory results in target selection for future marketing activities. To solve this problem, we develop a new binary response model and a new marketing target selection method. The proposed model can predict multiple propensity scores per customer through customer-specific propensity score distributions, which is not possible with existing response models, filling a gap in the literature. The target selection method can determine the best propensity scores from those predicted by the proposed model and use them to select customers for further marketing activities. Our simulation results and application to real marketing data confirm that the performance of the proposed model in target selection is significantly better than that of the existing models, including some popular machine learning methods, which indicate that our method can be very useful in practice.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12406\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

市场营销中使用的响应模型并不总是为以后的市场营销优化而构建的,这往往会导致未来市场营销活动的目标选择结果不尽如人意。为了解决这个问题,我们开发了一种新的二元响应模型和一种新的营销目标选择方法。所提出的模型可以通过特定客户的倾向得分分布来预测每个客户的多个倾向得分,这是现有响应模型所无法实现的,填补了文献空白。目标选择方法可从所提模型预测的倾向得分中确定最佳倾向得分,并利用这些倾向得分选择客户开展进一步营销活动。我们的仿真结果和对真实营销数据的应用证实,建议模型在目标选择方面的性能明显优于现有模型,包括一些流行的机器学习方法,这表明我们的方法在实践中非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A novel response model and target selection method with applications to marketing

分享
查看原文
A novel response model and target selection method with applications to marketing

Response models used in marketing are not always constructed for later marketing optimisation, which often results in unsatisfactory results in target selection for future marketing activities. To solve this problem, we develop a new binary response model and a new marketing target selection method. The proposed model can predict multiple propensity scores per customer through customer-specific propensity score distributions, which is not possible with existing response models, filling a gap in the literature. The target selection method can determine the best propensity scores from those predicted by the proposed model and use them to select customers for further marketing activities. Our simulation results and application to real marketing data confirm that the performance of the proposed model in target selection is significantly better than that of the existing models, including some popular machine learning methods, which indicate that our method can be very useful in practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信