S M Nuruzzaman Nobel, S M Masfequier Rahman Swapno, Md Ashraful Hossain, Mejdl Safran, Sultan Alfarhood, Md Mohsin Kabir, M F Mridha
{"title":"利用注意力嵌入器进行现代亚型分类和离群点检测,改变卵巢癌诊断。","authors":"S M Nuruzzaman Nobel, S M Masfequier Rahman Swapno, Md Ashraful Hossain, Mejdl Safran, Sultan Alfarhood, Md Mohsin Kabir, M F Mridha","doi":"10.3390/tomography10010010","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer, a deadly female reproductive system disease, is a significant challenge in medical research due to its notorious lethality. Addressing ovarian cancer in the current medical landscape has become more complex than ever. This research explores the complex field of Ovarian Cancer Subtype Classification and the crucial task of Outlier Detection, driven by a progressive automated system, as the need to fight this unforgiving illness becomes critical. This study primarily uses a unique dataset painstakingly selected from 20 esteemed medical institutes. The dataset includes a wide range of images, such as tissue microarray (TMA) images at 40× magnification and whole-slide images (WSI) at 20× magnification. The research is fully committed to identifying abnormalities within this complex environment, going beyond the classification of subtypes of ovarian cancer. We proposed a new Attention Embedder, a state-of-the-art model with effective results in ovarian cancer subtype classification and outlier detection. Using images magnified WSI, the model demonstrated an astonishing 96.42% training accuracy and 95.10% validation accuracy. Similarly, with images magnified via a TMA, the model performed well, obtaining a validation accuracy of 94.90% and a training accuracy of 93.45%. Our fine-tuned hyperparameter testing resulted in exceptional performance on independent images. At 20× magnification, we achieved an accuracy of 93.56%. Even at 40× magnification, our testing accuracy remained high, at 91.37%. This study highlights how machine learning can revolutionize the medical field's ability to classify ovarian cancer subtypes and identify outliers, giving doctors a valuable tool to lessen the severe effects of the disease. Adopting this novel method is likely to improve the practice of medicine and give people living with ovarian cancer worldwide hope.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"10 1","pages":"105-132"},"PeriodicalIF":2.2000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154515/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modern Subtype Classification and Outlier Detection Using the Attention Embedder to Transform Ovarian Cancer Diagnosis.\",\"authors\":\"S M Nuruzzaman Nobel, S M Masfequier Rahman Swapno, Md Ashraful Hossain, Mejdl Safran, Sultan Alfarhood, Md Mohsin Kabir, M F Mridha\",\"doi\":\"10.3390/tomography10010010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ovarian cancer, a deadly female reproductive system disease, is a significant challenge in medical research due to its notorious lethality. Addressing ovarian cancer in the current medical landscape has become more complex than ever. This research explores the complex field of Ovarian Cancer Subtype Classification and the crucial task of Outlier Detection, driven by a progressive automated system, as the need to fight this unforgiving illness becomes critical. This study primarily uses a unique dataset painstakingly selected from 20 esteemed medical institutes. The dataset includes a wide range of images, such as tissue microarray (TMA) images at 40× magnification and whole-slide images (WSI) at 20× magnification. The research is fully committed to identifying abnormalities within this complex environment, going beyond the classification of subtypes of ovarian cancer. We proposed a new Attention Embedder, a state-of-the-art model with effective results in ovarian cancer subtype classification and outlier detection. Using images magnified WSI, the model demonstrated an astonishing 96.42% training accuracy and 95.10% validation accuracy. Similarly, with images magnified via a TMA, the model performed well, obtaining a validation accuracy of 94.90% and a training accuracy of 93.45%. Our fine-tuned hyperparameter testing resulted in exceptional performance on independent images. At 20× magnification, we achieved an accuracy of 93.56%. Even at 40× magnification, our testing accuracy remained high, at 91.37%. This study highlights how machine learning can revolutionize the medical field's ability to classify ovarian cancer subtypes and identify outliers, giving doctors a valuable tool to lessen the severe effects of the disease. Adopting this novel method is likely to improve the practice of medicine and give people living with ovarian cancer worldwide hope.</p>\",\"PeriodicalId\":51330,\"journal\":{\"name\":\"Tomography\",\"volume\":\"10 1\",\"pages\":\"105-132\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154515/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tomography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/tomography10010010\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography10010010","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Modern Subtype Classification and Outlier Detection Using the Attention Embedder to Transform Ovarian Cancer Diagnosis.
Ovarian cancer, a deadly female reproductive system disease, is a significant challenge in medical research due to its notorious lethality. Addressing ovarian cancer in the current medical landscape has become more complex than ever. This research explores the complex field of Ovarian Cancer Subtype Classification and the crucial task of Outlier Detection, driven by a progressive automated system, as the need to fight this unforgiving illness becomes critical. This study primarily uses a unique dataset painstakingly selected from 20 esteemed medical institutes. The dataset includes a wide range of images, such as tissue microarray (TMA) images at 40× magnification and whole-slide images (WSI) at 20× magnification. The research is fully committed to identifying abnormalities within this complex environment, going beyond the classification of subtypes of ovarian cancer. We proposed a new Attention Embedder, a state-of-the-art model with effective results in ovarian cancer subtype classification and outlier detection. Using images magnified WSI, the model demonstrated an astonishing 96.42% training accuracy and 95.10% validation accuracy. Similarly, with images magnified via a TMA, the model performed well, obtaining a validation accuracy of 94.90% and a training accuracy of 93.45%. Our fine-tuned hyperparameter testing resulted in exceptional performance on independent images. At 20× magnification, we achieved an accuracy of 93.56%. Even at 40× magnification, our testing accuracy remained high, at 91.37%. This study highlights how machine learning can revolutionize the medical field's ability to classify ovarian cancer subtypes and identify outliers, giving doctors a valuable tool to lessen the severe effects of the disease. Adopting this novel method is likely to improve the practice of medicine and give people living with ovarian cancer worldwide hope.
TomographyMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍:
TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine.
Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians.
Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.