Michelle Meagher, Jacob Tamburro, Nanette R. Boyle
{"title":"定制的 3D 打印桨轮改善了平板光生物反应器的生长。","authors":"Michelle Meagher, Jacob Tamburro, Nanette R. Boyle","doi":"10.1002/btpr.3430","DOIUrl":null,"url":null,"abstract":"<p>One of the main challenges with using flat panel photobioreactors for algal growth is uneven mixing and settling of cells in corners, especially when bubbling is the only method used for mixing. In order to improve mixing in our flat panel reactor, we designed a custom paddlewheel. Paddlewheels are frequently used in outdoor algae raceway ponds to improve mixing and we are taking advantage of the same principle for mixing in the reactor. The paddlewheel is easily integrated into our PSI FMT150 1-L flat panel photobioreactor and is printed on a 3D printer using high temperature poly lactic acid (HT-PLA). With the inclusion of an annealing step, the paddlewheel is autoclavable. Addition of the paddlewheel in the reactor minimized cell settling and improved algal growth, as evidenced by a nearly 40% increase in oxygen production rates. Nutrient dispersion and utilization in the culture was also improved as evidenced by a corresponding 38% decrease in CO<sub>2</sub> concentration. The paddlewheel device presented here is a cost-effective method for improving algal growth in a flat panel photobioreactor.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A custom 3D printed paddlewheel improves growth in flat panel photobioreactor\",\"authors\":\"Michelle Meagher, Jacob Tamburro, Nanette R. Boyle\",\"doi\":\"10.1002/btpr.3430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>One of the main challenges with using flat panel photobioreactors for algal growth is uneven mixing and settling of cells in corners, especially when bubbling is the only method used for mixing. In order to improve mixing in our flat panel reactor, we designed a custom paddlewheel. Paddlewheels are frequently used in outdoor algae raceway ponds to improve mixing and we are taking advantage of the same principle for mixing in the reactor. The paddlewheel is easily integrated into our PSI FMT150 1-L flat panel photobioreactor and is printed on a 3D printer using high temperature poly lactic acid (HT-PLA). With the inclusion of an annealing step, the paddlewheel is autoclavable. Addition of the paddlewheel in the reactor minimized cell settling and improved algal growth, as evidenced by a nearly 40% increase in oxygen production rates. Nutrient dispersion and utilization in the culture was also improved as evidenced by a corresponding 38% decrease in CO<sub>2</sub> concentration. The paddlewheel device presented here is a cost-effective method for improving algal growth in a flat panel photobioreactor.</p>\",\"PeriodicalId\":8856,\"journal\":{\"name\":\"Biotechnology Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/btpr.3430\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/btpr.3430","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A custom 3D printed paddlewheel improves growth in flat panel photobioreactor
One of the main challenges with using flat panel photobioreactors for algal growth is uneven mixing and settling of cells in corners, especially when bubbling is the only method used for mixing. In order to improve mixing in our flat panel reactor, we designed a custom paddlewheel. Paddlewheels are frequently used in outdoor algae raceway ponds to improve mixing and we are taking advantage of the same principle for mixing in the reactor. The paddlewheel is easily integrated into our PSI FMT150 1-L flat panel photobioreactor and is printed on a 3D printer using high temperature poly lactic acid (HT-PLA). With the inclusion of an annealing step, the paddlewheel is autoclavable. Addition of the paddlewheel in the reactor minimized cell settling and improved algal growth, as evidenced by a nearly 40% increase in oxygen production rates. Nutrient dispersion and utilization in the culture was also improved as evidenced by a corresponding 38% decrease in CO2 concentration. The paddlewheel device presented here is a cost-effective method for improving algal growth in a flat panel photobioreactor.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.