Lovisa Jessen, Johan Gustafsson, Michael Ljungberg, Selma Curkic-Kapidzic, Muris Imsirovic, Katarina Sjögreen-Gleisner
{"title":"用于定量 SPECT 的 3D 打印非均匀拟人模型。","authors":"Lovisa Jessen, Johan Gustafsson, Michael Ljungberg, Selma Curkic-Kapidzic, Muris Imsirovic, Katarina Sjögreen-Gleisner","doi":"10.1186/s40658-024-00613-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A 3D printing grid-based method was developed to construct anthropomorphic phantoms with non-uniform activity distributions, to be used for evaluation of quantitative SPECT images. The aims were to characterize the grid-based method and to evaluate its capability to provide realistically shaped phantoms with non-uniform activity distributions.</p><p><strong>Methods: </strong>Characterization of the grid structures was performed by printing grid-filled spheres. Evaluation was performed by micro-CT imaging to investigate the printing accuracy and by studying the modulation contrast ([Formula: see text]) in SPECT images for <sup>177</sup>Lu and <sup>99m</sup>Tc as a function of the grid fillable-volume fraction (FVF) determined from weighing. The grid-based technique was applied for the construction of two kidney phantoms and two thyroid phantoms, designed using templates from the XCAT digital phantoms. The kidneys were constructed with a hollow outer container shaped as cortex, an inner grid-based structure representing medulla and a solid section representing pelvis. The thyroids consisted of two lobes printed as grid-based structures, with void hot spots within the lobes. The phantoms were filled with solutions of <sup>177</sup>Lu (kidneys) or <sup>99m</sup>Tc (thyroids) and imaged with SPECT. For verification, Monte Carlo simulations of SPECT imaging were performed for activity distributions corresponding to those of the printed phantoms. Measured and simulated SPECT images were compared qualitatively and quantitatively.</p><p><strong>Results: </strong>Micro-CT images showed that printing inaccuracies were mainly uniform across the grid. The relationships between the FVF from weighing and [Formula: see text] were found to be linear (r = 0.9995 and r = 0.9993 for <sup>177</sup>Lu and <sup>99m</sup>Tc, respectively). The FVF-deviations from the design were up to 15% for thyroids and 4% for kidneys, mainly related to possibilities of cleaning after printing. Measured and simulated SPECT images of kidneys and thyroids exhibited similar activity distributions and quantitative comparisons agreed well, thus verifying the grid-based method.</p><p><strong>Conclusions: </strong>We find the grid-based technique useful for the provision of 3D printed, realistically shaped, phantoms with non-uniform activity distributions, which can be used for evaluation of different quantitative methods in SPECT imaging.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"8"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803701/pdf/","citationCount":"0","resultStr":"{\"title\":\"3D printed non-uniform anthropomorphic phantoms for quantitative SPECT.\",\"authors\":\"Lovisa Jessen, Johan Gustafsson, Michael Ljungberg, Selma Curkic-Kapidzic, Muris Imsirovic, Katarina Sjögreen-Gleisner\",\"doi\":\"10.1186/s40658-024-00613-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>A 3D printing grid-based method was developed to construct anthropomorphic phantoms with non-uniform activity distributions, to be used for evaluation of quantitative SPECT images. The aims were to characterize the grid-based method and to evaluate its capability to provide realistically shaped phantoms with non-uniform activity distributions.</p><p><strong>Methods: </strong>Characterization of the grid structures was performed by printing grid-filled spheres. Evaluation was performed by micro-CT imaging to investigate the printing accuracy and by studying the modulation contrast ([Formula: see text]) in SPECT images for <sup>177</sup>Lu and <sup>99m</sup>Tc as a function of the grid fillable-volume fraction (FVF) determined from weighing. The grid-based technique was applied for the construction of two kidney phantoms and two thyroid phantoms, designed using templates from the XCAT digital phantoms. The kidneys were constructed with a hollow outer container shaped as cortex, an inner grid-based structure representing medulla and a solid section representing pelvis. The thyroids consisted of two lobes printed as grid-based structures, with void hot spots within the lobes. The phantoms were filled with solutions of <sup>177</sup>Lu (kidneys) or <sup>99m</sup>Tc (thyroids) and imaged with SPECT. For verification, Monte Carlo simulations of SPECT imaging were performed for activity distributions corresponding to those of the printed phantoms. Measured and simulated SPECT images were compared qualitatively and quantitatively.</p><p><strong>Results: </strong>Micro-CT images showed that printing inaccuracies were mainly uniform across the grid. The relationships between the FVF from weighing and [Formula: see text] were found to be linear (r = 0.9995 and r = 0.9993 for <sup>177</sup>Lu and <sup>99m</sup>Tc, respectively). The FVF-deviations from the design were up to 15% for thyroids and 4% for kidneys, mainly related to possibilities of cleaning after printing. Measured and simulated SPECT images of kidneys and thyroids exhibited similar activity distributions and quantitative comparisons agreed well, thus verifying the grid-based method.</p><p><strong>Conclusions: </strong>We find the grid-based technique useful for the provision of 3D printed, realistically shaped, phantoms with non-uniform activity distributions, which can be used for evaluation of different quantitative methods in SPECT imaging.</p>\",\"PeriodicalId\":11559,\"journal\":{\"name\":\"EJNMMI Physics\",\"volume\":\"11 1\",\"pages\":\"8\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803701/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EJNMMI Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40658-024-00613-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-024-00613-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
3D printed non-uniform anthropomorphic phantoms for quantitative SPECT.
Background: A 3D printing grid-based method was developed to construct anthropomorphic phantoms with non-uniform activity distributions, to be used for evaluation of quantitative SPECT images. The aims were to characterize the grid-based method and to evaluate its capability to provide realistically shaped phantoms with non-uniform activity distributions.
Methods: Characterization of the grid structures was performed by printing grid-filled spheres. Evaluation was performed by micro-CT imaging to investigate the printing accuracy and by studying the modulation contrast ([Formula: see text]) in SPECT images for 177Lu and 99mTc as a function of the grid fillable-volume fraction (FVF) determined from weighing. The grid-based technique was applied for the construction of two kidney phantoms and two thyroid phantoms, designed using templates from the XCAT digital phantoms. The kidneys were constructed with a hollow outer container shaped as cortex, an inner grid-based structure representing medulla and a solid section representing pelvis. The thyroids consisted of two lobes printed as grid-based structures, with void hot spots within the lobes. The phantoms were filled with solutions of 177Lu (kidneys) or 99mTc (thyroids) and imaged with SPECT. For verification, Monte Carlo simulations of SPECT imaging were performed for activity distributions corresponding to those of the printed phantoms. Measured and simulated SPECT images were compared qualitatively and quantitatively.
Results: Micro-CT images showed that printing inaccuracies were mainly uniform across the grid. The relationships between the FVF from weighing and [Formula: see text] were found to be linear (r = 0.9995 and r = 0.9993 for 177Lu and 99mTc, respectively). The FVF-deviations from the design were up to 15% for thyroids and 4% for kidneys, mainly related to possibilities of cleaning after printing. Measured and simulated SPECT images of kidneys and thyroids exhibited similar activity distributions and quantitative comparisons agreed well, thus verifying the grid-based method.
Conclusions: We find the grid-based technique useful for the provision of 3D printed, realistically shaped, phantoms with non-uniform activity distributions, which can be used for evaluation of different quantitative methods in SPECT imaging.
期刊介绍:
EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.