图的最大度和谱半径大小

Pub Date : 2024-01-20 DOI:10.1007/s10801-023-01289-5
Zhiwen Wang, Ji-Ming Guo
{"title":"图的最大度和谱半径大小","authors":"Zhiwen Wang, Ji-Ming Guo","doi":"10.1007/s10801-023-01289-5","DOIUrl":null,"url":null,"abstract":"<p>Denote by <span>\\(\\rho (G)\\)</span> and <span>\\(\\kappa (G)\\)</span> the spectral radius and the signless Laplacian spectral radius of a graph <i>G</i>, respectively. Let <span>\\(k\\ge 0\\)</span> be a fixed integer and <i>G</i> be a graph of size <i>m</i> which is large enough. We show that if <span>\\(\\rho (G)\\ge \\sqrt{m-k}\\)</span>, then <span>\\(C_4\\subseteq G\\)</span> or <span>\\(K_{1,m-k}\\subseteq G\\)</span>. Moreover, we prove that if <span>\\(\\kappa (G)\\ge m-k+1\\)</span>, then <span>\\(K_{1,m-k}\\subseteq G\\)</span>. Both these results extend some known results.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum degree and spectral radius of graphs in terms of size\",\"authors\":\"Zhiwen Wang, Ji-Ming Guo\",\"doi\":\"10.1007/s10801-023-01289-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Denote by <span>\\\\(\\\\rho (G)\\\\)</span> and <span>\\\\(\\\\kappa (G)\\\\)</span> the spectral radius and the signless Laplacian spectral radius of a graph <i>G</i>, respectively. Let <span>\\\\(k\\\\ge 0\\\\)</span> be a fixed integer and <i>G</i> be a graph of size <i>m</i> which is large enough. We show that if <span>\\\\(\\\\rho (G)\\\\ge \\\\sqrt{m-k}\\\\)</span>, then <span>\\\\(C_4\\\\subseteq G\\\\)</span> or <span>\\\\(K_{1,m-k}\\\\subseteq G\\\\)</span>. Moreover, we prove that if <span>\\\\(\\\\kappa (G)\\\\ge m-k+1\\\\)</span>, then <span>\\\\(K_{1,m-k}\\\\subseteq G\\\\)</span>. Both these results extend some known results.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10801-023-01289-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-023-01289-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用 \(\rho (G)\) 和 \(\kappa (G)\) 分别表示图 G 的谱半径和无符号拉普拉斯谱半径。让 \(k\ge 0\) 是一个固定整数,G 是一个大小为 m 且足够大的图。我们证明,如果 \(\rho (G)\ge \sqrt{m-k}\), 那么 \(C_4\subseteq G\) 或者 \(K_{1,m-k}\subseteq G\).此外,我们还证明了如果\(\kappa (G)\ge m-k+1\),那么\(K_{1,m-k}subseteq G\).这两个结果都扩展了一些已知结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Maximum degree and spectral radius of graphs in terms of size

Denote by \(\rho (G)\) and \(\kappa (G)\) the spectral radius and the signless Laplacian spectral radius of a graph G, respectively. Let \(k\ge 0\) be a fixed integer and G be a graph of size m which is large enough. We show that if \(\rho (G)\ge \sqrt{m-k}\), then \(C_4\subseteq G\) or \(K_{1,m-k}\subseteq G\). Moreover, we prove that if \(\kappa (G)\ge m-k+1\), then \(K_{1,m-k}\subseteq G\). Both these results extend some known results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信