流动增强 II:无向图

IF 0.9 3区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, Magnus Wahlström
{"title":"流动增强 II:无向图","authors":"Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, Magnus Wahlström","doi":"10.1145/3641105","DOIUrl":null,"url":null,"abstract":"<p>We present an undirected version of the recently introduced <i>flow-augmentation</i> technique: Given an undirected multigraph <i>G</i> with distinguished vertices <i>s</i>, <i>t</i> ∈ <i>V</i>(<i>G</i>) and an integer <i>k</i>, one can in randomized \\(k^{\\mathcal {O}(1)} \\cdot (|V(G)| + |E(G)|) \\) time sample a set \\(A \\subseteq \\binom{V(G)}{2} \\) such that the following holds: for every inclusion-wise minimal <i>st</i>-cut <i>Z</i> in <i>G</i> of cardinality at most <i>k</i>, <i>Z</i> becomes a <i>minimum-cardinality</i> cut between <i>s</i> and <i>t</i> in <i>G</i> + <i>A</i> (i.e., in the multigraph <i>G</i> with all edges of <i>A</i> added) with probability \\(2^{-\\mathcal {O}(k \\log k)} \\). </p><p>Compared to the version for directed graphs [STOC 2022], the version presented here has improved success probability (\\(2^{-\\mathcal {O}(k \\log k)} \\) instead of \\(2^{-\\mathcal {O}(k^4 \\log k)} \\)), linear dependency on the graph size in the running time bound, and an arguably simpler proof. </p><p>An immediate corollary is that the <span>Bi-objective <i>st</i>-Cut</span> problem can be solved in randomized FPT time \\(2^{\\mathcal {O}(k \\log k)} (|V(G)|+|E(G)|) \\) on undirected graphs.</p>","PeriodicalId":50922,"journal":{"name":"ACM Transactions on Algorithms","volume":"208 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow-augmentation II: Undirected graphs\",\"authors\":\"Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, Magnus Wahlström\",\"doi\":\"10.1145/3641105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present an undirected version of the recently introduced <i>flow-augmentation</i> technique: Given an undirected multigraph <i>G</i> with distinguished vertices <i>s</i>, <i>t</i> ∈ <i>V</i>(<i>G</i>) and an integer <i>k</i>, one can in randomized \\\\(k^{\\\\mathcal {O}(1)} \\\\cdot (|V(G)| + |E(G)|) \\\\) time sample a set \\\\(A \\\\subseteq \\\\binom{V(G)}{2} \\\\) such that the following holds: for every inclusion-wise minimal <i>st</i>-cut <i>Z</i> in <i>G</i> of cardinality at most <i>k</i>, <i>Z</i> becomes a <i>minimum-cardinality</i> cut between <i>s</i> and <i>t</i> in <i>G</i> + <i>A</i> (i.e., in the multigraph <i>G</i> with all edges of <i>A</i> added) with probability \\\\(2^{-\\\\mathcal {O}(k \\\\log k)} \\\\). </p><p>Compared to the version for directed graphs [STOC 2022], the version presented here has improved success probability (\\\\(2^{-\\\\mathcal {O}(k \\\\log k)} \\\\) instead of \\\\(2^{-\\\\mathcal {O}(k^4 \\\\log k)} \\\\)), linear dependency on the graph size in the running time bound, and an arguably simpler proof. </p><p>An immediate corollary is that the <span>Bi-objective <i>st</i>-Cut</span> problem can be solved in randomized FPT time \\\\(2^{\\\\mathcal {O}(k \\\\log k)} (|V(G)|+|E(G)|) \\\\) on undirected graphs.</p>\",\"PeriodicalId\":50922,\"journal\":{\"name\":\"ACM Transactions on Algorithms\",\"volume\":\"208 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3641105\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3641105","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了最近引入的流增量技术的不定向版本:给定一个具有区分顶点 s、t∈V(G) 的无向多图 G 和一个整数 k,我们可以在随机 \(k^{\mathcal {O}(1)} \cdot (|V(G)| + |E(G)|)\)时间采样一个集合(A \subseteq \binom{V(G)}{2}\),使得下面的条件成立:对于 G 中卡片数最多为 k 的每一个包含式最小 st 切分 Z,Z 都会以概率 \(2^{-\mathcal {O}(k \log k)} \)成为 G + A 中 s 和 t 之间的最小卡片数切分(即在添加了 A 的所有边的多图 G 中)。与有向图 [STOC 2022] 的版本相比,这里介绍的版本提高了成功概率(\(2^{-\mathcal {O}(k \log k)} \)而不是\(2^{-\mathcal {O}(k^4 \log k)} \)),在运行时间约束中与图的大小呈线性关系,而且可以说证明更简单。一个直接推论是,在无向图上,双目标 st-Cut 问题可以在随机 FPT 时间内求解(2^{\mathcal {O}(k \log k)} (|V(G)|+|E(G)|)\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flow-augmentation II: Undirected graphs

We present an undirected version of the recently introduced flow-augmentation technique: Given an undirected multigraph G with distinguished vertices s, tV(G) and an integer k, one can in randomized \(k^{\mathcal {O}(1)} \cdot (|V(G)| + |E(G)|) \) time sample a set \(A \subseteq \binom{V(G)}{2} \) such that the following holds: for every inclusion-wise minimal st-cut Z in G of cardinality at most k, Z becomes a minimum-cardinality cut between s and t in G + A (i.e., in the multigraph G with all edges of A added) with probability \(2^{-\mathcal {O}(k \log k)} \).

Compared to the version for directed graphs [STOC 2022], the version presented here has improved success probability (\(2^{-\mathcal {O}(k \log k)} \) instead of \(2^{-\mathcal {O}(k^4 \log k)} \)), linear dependency on the graph size in the running time bound, and an arguably simpler proof.

An immediate corollary is that the Bi-objective st-Cut problem can be solved in randomized FPT time \(2^{\mathcal {O}(k \log k)} (|V(G)|+|E(G)|) \) on undirected graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Algorithms
ACM Transactions on Algorithms COMPUTER SCIENCE, THEORY & METHODS-MATHEMATICS, APPLIED
CiteScore
3.30
自引率
0.00%
发文量
50
审稿时长
6-12 weeks
期刊介绍: ACM Transactions on Algorithms welcomes submissions of original research of the highest quality dealing with algorithms that are inherently discrete and finite, and having mathematical content in a natural way, either in the objective or in the analysis. Most welcome are new algorithms and data structures, new and improved analyses, and complexity results. Specific areas of computation covered by the journal include combinatorial searches and objects; counting; discrete optimization and approximation; randomization and quantum computation; parallel and distributed computation; algorithms for graphs, geometry, arithmetic, number theory, strings; on-line analysis; cryptography; coding; data compression; learning algorithms; methods of algorithmic analysis; discrete algorithms for application areas such as biology, economics, game theory, communication, computer systems and architecture, hardware design, scientific computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信