{"title":"非微扰状态下假真空的命运","authors":"Marco Frasca, Anish Ghoshal, Nobuchika Okada","doi":"10.1088/1361-6471/ad170e","DOIUrl":null,"url":null,"abstract":"We use some exact results in scalar field theory to revise the analysis by Coleman and Callan about false vacuum decay and propose a simple non-perturbative formalism. We introduce an exact Green’s function which incorporates non-perturbative corrections in the strong coupling regimes of the theory. The solution of the scalar field theory involves the Jacobi elliptical function and has been used to calculate the effective potential for any arbitrary coupling values. We demonstrate the use of this formalism in a simple <italic toggle=\"yes\">λ</italic>\n<italic toggle=\"yes\">ϕ</italic>\n<sup>4</sup> theory, and show that the effective potential exhibits a false minimum at the origin. We then calculate the false vacuum decay rate in the thin wall approximation, and suggest simple analytic formulae that may be useful for the analysis for the first-order phase transition beyond the perturbative regime. In our methodology, we show that the standard results obtained in perturbation theory are reproduced by making the coupling values very small.","PeriodicalId":16766,"journal":{"name":"Journal of Physics G: Nuclear and Particle Physics","volume":"98 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fate of false vacuum in non-perturbative regimes\",\"authors\":\"Marco Frasca, Anish Ghoshal, Nobuchika Okada\",\"doi\":\"10.1088/1361-6471/ad170e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use some exact results in scalar field theory to revise the analysis by Coleman and Callan about false vacuum decay and propose a simple non-perturbative formalism. We introduce an exact Green’s function which incorporates non-perturbative corrections in the strong coupling regimes of the theory. The solution of the scalar field theory involves the Jacobi elliptical function and has been used to calculate the effective potential for any arbitrary coupling values. We demonstrate the use of this formalism in a simple <italic toggle=\\\"yes\\\">λ</italic>\\n<italic toggle=\\\"yes\\\">ϕ</italic>\\n<sup>4</sup> theory, and show that the effective potential exhibits a false minimum at the origin. We then calculate the false vacuum decay rate in the thin wall approximation, and suggest simple analytic formulae that may be useful for the analysis for the first-order phase transition beyond the perturbative regime. In our methodology, we show that the standard results obtained in perturbation theory are reproduced by making the coupling values very small.\",\"PeriodicalId\":16766,\"journal\":{\"name\":\"Journal of Physics G: Nuclear and Particle Physics\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics G: Nuclear and Particle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6471/ad170e\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics G: Nuclear and Particle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6471/ad170e","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
We use some exact results in scalar field theory to revise the analysis by Coleman and Callan about false vacuum decay and propose a simple non-perturbative formalism. We introduce an exact Green’s function which incorporates non-perturbative corrections in the strong coupling regimes of the theory. The solution of the scalar field theory involves the Jacobi elliptical function and has been used to calculate the effective potential for any arbitrary coupling values. We demonstrate the use of this formalism in a simple λϕ4 theory, and show that the effective potential exhibits a false minimum at the origin. We then calculate the false vacuum decay rate in the thin wall approximation, and suggest simple analytic formulae that may be useful for the analysis for the first-order phase transition beyond the perturbative regime. In our methodology, we show that the standard results obtained in perturbation theory are reproduced by making the coupling values very small.
期刊介绍:
Journal of Physics G: Nuclear and Particle Physics (JPhysG) publishes articles on theoretical and experimental topics in all areas of nuclear and particle physics, including nuclear and particle astrophysics. The journal welcomes submissions from any interface area between these fields.
All aspects of fundamental nuclear physics research, including:
nuclear forces and few-body systems;
nuclear structure and nuclear reactions;
rare decays and fundamental symmetries;
hadronic physics, lattice QCD;
heavy-ion physics;
hot and dense matter, QCD phase diagram.
All aspects of elementary particle physics research, including:
high-energy particle physics;
neutrino physics;
phenomenology and theory;
beyond standard model physics;
electroweak interactions;
fundamental symmetries.
All aspects of nuclear and particle astrophysics including:
nuclear physics of stars and stellar explosions;
nucleosynthesis;
nuclear equation of state;
astrophysical neutrino physics;
cosmic rays;
dark matter.
JPhysG publishes a variety of article types for the community. As well as high-quality research papers, this includes our prestigious topical review series, focus issues, and the rapid publication of letters.