双公制度量空间上与非负自兼算子相关的哈代空间和球准巴拿赫函数空间及其应用

IF 1.1 4区 数学 Q1 MATHEMATICS
Xiaosheng Lin, Dachun Yang, Sibei Yang, Wen Yuan
{"title":"双公制度量空间上与非负自兼算子相关的哈代空间和球准巴拿赫函数空间及其应用","authors":"Xiaosheng Lin, Dachun Yang, Sibei Yang, Wen Yuan","doi":"10.1007/s40304-023-00376-0","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(({\\mathcal {X}},d,\\mu )\\)</span> be a doubling metric measure space in the sense of R. R. Coifman and G. Weiss, <i>L</i> a non-negative self-adjoint operator on <span>\\(L^2({\\mathcal {X}})\\)</span> satisfying the Davies–Gaffney estimate, and <span>\\(X({\\mathcal {X}})\\)</span> a ball quasi-Banach function space on <span>\\({\\mathcal {X}}\\)</span> satisfying some extra mild assumptions. In this article, the authors introduce the Hardy type space <span>\\(H_{X,\\,L}({\\mathcal {X}})\\)</span> by the Lusin area function associated with <i>L</i> and establish the atomic and the molecular characterizations of <span>\\(H_{X,\\,L}({\\mathcal {X}}).\\)</span> As an application of these characterizations of <span>\\(H_{X,\\,L}({\\mathcal {X}})\\)</span>, the authors obtain the boundedness of spectral multiplies on <span>\\(H_{X,\\,L}({\\mathcal {X}})\\)</span>. Moreover, when <i>L</i> satisfies the Gaussian upper bound estimate, the authors further characterize <span>\\(H_{X,\\,L}({\\mathcal {X}})\\)</span> in terms of the Littlewood–Paley functions <span>\\(g_L\\)</span> and <span>\\(g_{\\lambda ,\\,L}^*\\)</span> and establish the boundedness estimate of Schrödinger groups on <span>\\(H_{X,\\,L}({\\mathcal {X}})\\)</span>. Specific spaces <span>\\(X({\\mathcal {X}})\\)</span> to which these results can be applied include Lebesgue spaces, Orlicz spaces, weighted Lebesgue spaces, and variable Lebesgue spaces. This shows that the results obtained in the article have extensive generality.</p>","PeriodicalId":10575,"journal":{"name":"Communications in Mathematics and Statistics","volume":"9 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardy Spaces Associated with Non-negative Self-adjoint Operators and Ball Quasi-Banach Function Spaces on Doubling Metric Measure Spaces and Their Applications\",\"authors\":\"Xiaosheng Lin, Dachun Yang, Sibei Yang, Wen Yuan\",\"doi\":\"10.1007/s40304-023-00376-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(({\\\\mathcal {X}},d,\\\\mu )\\\\)</span> be a doubling metric measure space in the sense of R. R. Coifman and G. Weiss, <i>L</i> a non-negative self-adjoint operator on <span>\\\\(L^2({\\\\mathcal {X}})\\\\)</span> satisfying the Davies–Gaffney estimate, and <span>\\\\(X({\\\\mathcal {X}})\\\\)</span> a ball quasi-Banach function space on <span>\\\\({\\\\mathcal {X}}\\\\)</span> satisfying some extra mild assumptions. In this article, the authors introduce the Hardy type space <span>\\\\(H_{X,\\\\,L}({\\\\mathcal {X}})\\\\)</span> by the Lusin area function associated with <i>L</i> and establish the atomic and the molecular characterizations of <span>\\\\(H_{X,\\\\,L}({\\\\mathcal {X}}).\\\\)</span> As an application of these characterizations of <span>\\\\(H_{X,\\\\,L}({\\\\mathcal {X}})\\\\)</span>, the authors obtain the boundedness of spectral multiplies on <span>\\\\(H_{X,\\\\,L}({\\\\mathcal {X}})\\\\)</span>. Moreover, when <i>L</i> satisfies the Gaussian upper bound estimate, the authors further characterize <span>\\\\(H_{X,\\\\,L}({\\\\mathcal {X}})\\\\)</span> in terms of the Littlewood–Paley functions <span>\\\\(g_L\\\\)</span> and <span>\\\\(g_{\\\\lambda ,\\\\,L}^*\\\\)</span> and establish the boundedness estimate of Schrödinger groups on <span>\\\\(H_{X,\\\\,L}({\\\\mathcal {X}})\\\\)</span>. Specific spaces <span>\\\\(X({\\\\mathcal {X}})\\\\)</span> to which these results can be applied include Lebesgue spaces, Orlicz spaces, weighted Lebesgue spaces, and variable Lebesgue spaces. This shows that the results obtained in the article have extensive generality.</p>\",\"PeriodicalId\":10575,\"journal\":{\"name\":\"Communications in Mathematics and Statistics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematics and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40304-023-00376-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40304-023-00376-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \(({\mathcal {X}},d,\mu )\) 是 R. R. Coifman 和 G. Weiss 意义上的加倍度量空间。Weiss, L 是满足戴维斯-加夫尼估计的 \(L^2({\mathcal {X}})上的非负自联合算子,并且 \(X({\mathcal {X}})是满足一些额外温和假设的 \({\mathcal {X}})上的球准巴纳赫函数空间。在本文中,作者通过与 L 关联的 Lusin 面积函数引入了哈代类型空间 \(H_{X,\,L}({\mathcal {X}}),并建立了 \(H_{X,\,L}({\mathcal {X}})的原子和分子特征。)作为这些对 \(H_{X,\,L}({\mathcal {X}})\)的描述的应用,作者得到了谱乘在\(H_{X,\,L}({\mathcal {X}})\)上的有界性。此外,当 L 满足高斯上限估计时,作者进一步用 Littlewood-Paley 函数 \(g_L\) 和 \(g_{\lambda ,\,L}^*\) 描述了 \(H_{X,\,L}({\mathcal {X}})上薛定谔群的有界性估计。这些结果可以应用的具体空间\(X({\mathcal {X})\)包括勒贝格空间、奥利兹空间、加权勒贝格空间和可变勒贝格空间。这表明文章中得到的结果具有广泛的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardy Spaces Associated with Non-negative Self-adjoint Operators and Ball Quasi-Banach Function Spaces on Doubling Metric Measure Spaces and Their Applications

Let \(({\mathcal {X}},d,\mu )\) be a doubling metric measure space in the sense of R. R. Coifman and G. Weiss, L a non-negative self-adjoint operator on \(L^2({\mathcal {X}})\) satisfying the Davies–Gaffney estimate, and \(X({\mathcal {X}})\) a ball quasi-Banach function space on \({\mathcal {X}}\) satisfying some extra mild assumptions. In this article, the authors introduce the Hardy type space \(H_{X,\,L}({\mathcal {X}})\) by the Lusin area function associated with L and establish the atomic and the molecular characterizations of \(H_{X,\,L}({\mathcal {X}}).\) As an application of these characterizations of \(H_{X,\,L}({\mathcal {X}})\), the authors obtain the boundedness of spectral multiplies on \(H_{X,\,L}({\mathcal {X}})\). Moreover, when L satisfies the Gaussian upper bound estimate, the authors further characterize \(H_{X,\,L}({\mathcal {X}})\) in terms of the Littlewood–Paley functions \(g_L\) and \(g_{\lambda ,\,L}^*\) and establish the boundedness estimate of Schrödinger groups on \(H_{X,\,L}({\mathcal {X}})\). Specific spaces \(X({\mathcal {X}})\) to which these results can be applied include Lebesgue spaces, Orlicz spaces, weighted Lebesgue spaces, and variable Lebesgue spaces. This shows that the results obtained in the article have extensive generality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematics and Statistics
Communications in Mathematics and Statistics Mathematics-Statistics and Probability
CiteScore
1.80
自引率
0.00%
发文量
36
期刊介绍: Communications in Mathematics and Statistics is an international journal published by Springer-Verlag in collaboration with the School of Mathematical Sciences, University of Science and Technology of China (USTC). The journal will be committed to publish high level original peer reviewed research papers in various areas of mathematical sciences, including pure mathematics, applied mathematics, computational mathematics, and probability and statistics. Typically one volume is published each year, and each volume consists of four issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信