{"title":"预测早期子宫内膜癌的风险分层:多参数磁共振成像放射组学模型的意义","authors":"Huan Meng, Yu-Feng Sun, Yu Zhang, Ya-Nan Yu, Jing Wang, Jia-Ning Wang, Lin-Yan Xue, Xiao-Ping Yin","doi":"10.1007/s10278-023-00936-4","DOIUrl":null,"url":null,"abstract":"<p>Endometrial carcinoma (EC) risk stratification prior to surgery is crucial for clinical treatment. In this study, we intend to evaluate the predictive value of radiomics models based on magnetic resonance imaging (MRI) for risk stratification and staging of early-stage EC. The study included 155 patients who underwent MRI examinations prior to surgery and were pathologically diagnosed with early-stage EC between January, 2020, and September, 2022. Three-dimensional radiomics features were extracted from segmented tumor images captured by MRI scans (including T2WI, CE-T1WI delayed phase, and ADC), with 1521 features extracted from each of the three modalities. Then, using five-fold cross-validation and a multilayer perceptron algorithm, these features were filtered using Pearson’s correlation coefficient to develop a prediction model for risk stratification and staging of EC. The performance of each model was assessed by analyzing ROC curves and calculating the AUC, accuracy, sensitivity, and specificity. In terms of risk stratification, the CE-T1 sequence demonstrated the highest predictive accuracy of 0.858 ± 0.025 and an AUC of 0.878 ± 0.042 among the three sequences. However, combining all three sequences resulted in enhanced predictive accuracy, reaching 0.881 ± 0.040, with a corresponding increase in the AUC to 0.862 ± 0.069. In the context of staging, the utilization of a combination involving T2WI with CE-T1WI led to a notably elevated predictive accuracy of 0.956 ± 0.020, surpassing the accuracy achieved when employing any singular feature. Correspondingly, the AUC was 0.979 ± 0.022. When incorporating all three sequences concurrently, the predictive accuracy reached 0.956 ± 0.000, accompanied by an AUC of 0.986 ± 0.007. It is noteworthy that this level of accuracy surpassed that of the radiologist, which stood at 0.832. The MRI radiomics model has the potential to accurately predict the risk stratification and early staging of EC.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"26 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Risk Stratification in Early-Stage Endometrial Carcinoma: Significance of Multiparametric MRI Radiomics Model\",\"authors\":\"Huan Meng, Yu-Feng Sun, Yu Zhang, Ya-Nan Yu, Jing Wang, Jia-Ning Wang, Lin-Yan Xue, Xiao-Ping Yin\",\"doi\":\"10.1007/s10278-023-00936-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Endometrial carcinoma (EC) risk stratification prior to surgery is crucial for clinical treatment. In this study, we intend to evaluate the predictive value of radiomics models based on magnetic resonance imaging (MRI) for risk stratification and staging of early-stage EC. The study included 155 patients who underwent MRI examinations prior to surgery and were pathologically diagnosed with early-stage EC between January, 2020, and September, 2022. Three-dimensional radiomics features were extracted from segmented tumor images captured by MRI scans (including T2WI, CE-T1WI delayed phase, and ADC), with 1521 features extracted from each of the three modalities. Then, using five-fold cross-validation and a multilayer perceptron algorithm, these features were filtered using Pearson’s correlation coefficient to develop a prediction model for risk stratification and staging of EC. The performance of each model was assessed by analyzing ROC curves and calculating the AUC, accuracy, sensitivity, and specificity. In terms of risk stratification, the CE-T1 sequence demonstrated the highest predictive accuracy of 0.858 ± 0.025 and an AUC of 0.878 ± 0.042 among the three sequences. However, combining all three sequences resulted in enhanced predictive accuracy, reaching 0.881 ± 0.040, with a corresponding increase in the AUC to 0.862 ± 0.069. In the context of staging, the utilization of a combination involving T2WI with CE-T1WI led to a notably elevated predictive accuracy of 0.956 ± 0.020, surpassing the accuracy achieved when employing any singular feature. Correspondingly, the AUC was 0.979 ± 0.022. When incorporating all three sequences concurrently, the predictive accuracy reached 0.956 ± 0.000, accompanied by an AUC of 0.986 ± 0.007. It is noteworthy that this level of accuracy surpassed that of the radiologist, which stood at 0.832. The MRI radiomics model has the potential to accurately predict the risk stratification and early staging of EC.</p>\",\"PeriodicalId\":50214,\"journal\":{\"name\":\"Journal of Digital Imaging\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Digital Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-023-00936-4\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-023-00936-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Predicting Risk Stratification in Early-Stage Endometrial Carcinoma: Significance of Multiparametric MRI Radiomics Model
Endometrial carcinoma (EC) risk stratification prior to surgery is crucial for clinical treatment. In this study, we intend to evaluate the predictive value of radiomics models based on magnetic resonance imaging (MRI) for risk stratification and staging of early-stage EC. The study included 155 patients who underwent MRI examinations prior to surgery and were pathologically diagnosed with early-stage EC between January, 2020, and September, 2022. Three-dimensional radiomics features were extracted from segmented tumor images captured by MRI scans (including T2WI, CE-T1WI delayed phase, and ADC), with 1521 features extracted from each of the three modalities. Then, using five-fold cross-validation and a multilayer perceptron algorithm, these features were filtered using Pearson’s correlation coefficient to develop a prediction model for risk stratification and staging of EC. The performance of each model was assessed by analyzing ROC curves and calculating the AUC, accuracy, sensitivity, and specificity. In terms of risk stratification, the CE-T1 sequence demonstrated the highest predictive accuracy of 0.858 ± 0.025 and an AUC of 0.878 ± 0.042 among the three sequences. However, combining all three sequences resulted in enhanced predictive accuracy, reaching 0.881 ± 0.040, with a corresponding increase in the AUC to 0.862 ± 0.069. In the context of staging, the utilization of a combination involving T2WI with CE-T1WI led to a notably elevated predictive accuracy of 0.956 ± 0.020, surpassing the accuracy achieved when employing any singular feature. Correspondingly, the AUC was 0.979 ± 0.022. When incorporating all three sequences concurrently, the predictive accuracy reached 0.956 ± 0.000, accompanied by an AUC of 0.986 ± 0.007. It is noteworthy that this level of accuracy surpassed that of the radiologist, which stood at 0.832. The MRI radiomics model has the potential to accurately predict the risk stratification and early staging of EC.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.