云连续边缘三维激光雷达目标探测方法

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xuemei Li, Xuelian Liu, Da Xie, Chong Chen
{"title":"云连续边缘三维激光雷达目标探测方法","authors":"Xuemei Li, Xuelian Liu, Da Xie, Chong Chen","doi":"10.1007/s10723-023-09736-0","DOIUrl":null,"url":null,"abstract":"<p>In the internet of things, machine learning at the edge of cloud continuum is developing rapidly, providing more convenient services for design developers. The paper proposes a lidar target detection method based on scene density-awareness network for cloud continuum. The density-awareness network architecture is designed, and the context column feature network is proposed. The BEV density attention feature network is designed by cascading the density feature map with the spatial attention mechanism, and then connected with the BEV column feature network to generate the ablation BEV map. Multi-head detector is designed to regress the object center point, scale size and direction, and loss function is used for active supervision. The experiment is conducted on Alibaba Cloud services. On the validation dataset of KITTI, the 3D objects and BEV objects are detected and evaluated for three types of objects. The results show that most of the AP values of the density-awareness model proposed in this paper are higher than other methods, and the detection time is 0.09 s, which can meet the requirements of high accuracy and real-time of vehicle-borne lidar target detection.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Lidar Target Detection Method at the Edge for the Cloud Continuum\",\"authors\":\"Xuemei Li, Xuelian Liu, Da Xie, Chong Chen\",\"doi\":\"10.1007/s10723-023-09736-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the internet of things, machine learning at the edge of cloud continuum is developing rapidly, providing more convenient services for design developers. The paper proposes a lidar target detection method based on scene density-awareness network for cloud continuum. The density-awareness network architecture is designed, and the context column feature network is proposed. The BEV density attention feature network is designed by cascading the density feature map with the spatial attention mechanism, and then connected with the BEV column feature network to generate the ablation BEV map. Multi-head detector is designed to regress the object center point, scale size and direction, and loss function is used for active supervision. The experiment is conducted on Alibaba Cloud services. On the validation dataset of KITTI, the 3D objects and BEV objects are detected and evaluated for three types of objects. The results show that most of the AP values of the density-awareness model proposed in this paper are higher than other methods, and the detection time is 0.09 s, which can meet the requirements of high accuracy and real-time of vehicle-borne lidar target detection.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10723-023-09736-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-023-09736-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在物联网领域,云连续体边缘的机器学习发展迅速,为设计开发人员提供了更便捷的服务。本文提出了一种基于云连续体场景密度感知网络的激光雷达目标检测方法。设计了密度感知网络架构,并提出了上下文列特征网络。通过空间注意机制级联密度特征图,设计了 BEV 密度注意特征网络,然后与 BEV 列特征网络连接,生成消融 BEV 图。设计了多头检测器对物体中心点、尺度大小和方向进行回归,并使用损失函数进行主动监督。实验在阿里巴巴云服务上进行。在 KITTI 的验证数据集上,对三种类型的三维物体和 BEV 物体进行了检测和评估。结果表明,本文提出的密度感知模型的AP值大多高于其他方法,检测时间为0.09 s,能够满足车载激光雷达目标检测的高精度和实时性要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D Lidar Target Detection Method at the Edge for the Cloud Continuum

In the internet of things, machine learning at the edge of cloud continuum is developing rapidly, providing more convenient services for design developers. The paper proposes a lidar target detection method based on scene density-awareness network for cloud continuum. The density-awareness network architecture is designed, and the context column feature network is proposed. The BEV density attention feature network is designed by cascading the density feature map with the spatial attention mechanism, and then connected with the BEV column feature network to generate the ablation BEV map. Multi-head detector is designed to regress the object center point, scale size and direction, and loss function is used for active supervision. The experiment is conducted on Alibaba Cloud services. On the validation dataset of KITTI, the 3D objects and BEV objects are detected and evaluated for three types of objects. The results show that most of the AP values of the density-awareness model proposed in this paper are higher than other methods, and the detection time is 0.09 s, which can meet the requirements of high accuracy and real-time of vehicle-borne lidar target detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信